
Give Me Your Binary, I’ll Tell You If It Leaks
Antoine Bouvet∗§, Nicolas Bruneau∗, Adrien Facon∗‡, Sylvain Guilley∗†‡ and Damien Marion∗†

∗Secure-IC S.A.S., Think Ahead Business Line, 35510 Cesson-Sévigné, France
firstname.lastname@secure-ic.com

†LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, 75013 Paris, France
firstname.lastname@telecom-paristech.fr

‡Département d’informatique de l’ENS, École normale supérieure, CNRS, PSL Research University, Paris, France
firstname.lastname@ens.fr

Abstract—In this paper we present a method to identify
side-channel information leakage of a cryptosystem software
implementation, which is performed at the binary level, and
needs only a debugger. Using a new resynchronisation method
based on the control flow, leaking instructions are retrieved with
only few traces and without leakage model. Advantageously this
methodology is target agnostic, finding the side-channel leakages
without the need to know how the software will be used.

Index Terms—GDB, debugger, secure software, security verifi-
cation tool, control flow, synchronisation, Side Channel Analysis,
Correlation Power Analysis, AES.

I. INTRODUCTION

Software implementations of cryptographic algorithms gen-
erate long traces. When there is a protection, such as masking,
the traces are even longer, and can be desynchronised (because
the goal is to analyse compiled code, which can be third
party, i.e., one does not know the source code). Indeed, in
the smartcard industry, the software code is hand-written with
great care, and is reviewed, in order to match high level of
assurance (e.g., CC EAL5+). In the IoT industry, though, the
software is more complex and, for economical reasons, cannot
be reviewed with the same level of attention; hence the need of
a methodology to identify automatically side-channel leakage
early.

Even using masking schemes, it is not easy to write secure
software against side-channel attacks, mainly because security
regressions can occur at each stage of the refinement flow. For
instance, side-channel leakage can come from the algorithm
if the protection is flawed [1] or from the source code.
The intermediate representation can use a wrong processing
order of some variables. At the assembly stage, the register
allocation can be insecure (e.g. when information on the
sensitive variable X is revealed if a register contains succes-
sively M and X ⊕ M). The compiled code can introduce
a misalignement of the code between two executions, e.g.
because of conditional branching. Finally, at the gate-level
netlist stage, the code can be rescheduled, causing again some
problems of self-demasking in a given register.

Many works have focused on verifying leakages on sim-
ulators adapted to the final target. For instance, Program
Inferred Power Analysis Simulator (PINPAS) [2] is composed
of two parts: a simulator and an analyser. Developers need to
choose which type of microcontroller (smart card) they want

to simulate with the written code. The PINPAS simulator has
been improved by Thuillet et al. [3] by making it able to focus
the side-channel measurements on some parts of the circuit.

Barthe et al. introduce in 2015 [4] another approach based
on formal methods. It unrolls the computation symbolically
and resorts to a SAT-solver in order to find weaknesses
in masking schemes. However, it faces a problem of
combinatorial explosion.

Contributions: In this paper we present a security eval-
uation of cryptographic code, with a methodology which is
in-between PINPAS and formal methods, taking the best of
both ones: target agnostic (like formal methods) but able to
detect leakage even of complex software (dynamic approach).
Aiming to perform practical and efficient high-level security
evaluation, our method allow to identify first-order leakages.
Contrary to PINPAS approach, which aims at simulating at
high-level accurate traces which match the physical traces, our
method only require the use of debugger.

Interesingly, we show that our evaluation method reveals
the same leakages that occurs while executing a cryptographic
algorithm in a x86 architecture. The practicability of the pro-
posed analysis allows to detect and fix the leaking instructions
at early stage of the development cycle. As using a debbuger
we have directly access to the value of the variables and thus
the analysis is performed on the values in absence of leakage
model contrary to traditionnal side-channel analysis methods.

Lastly, our methodology introduces a new resynchronisation
method. Indeed desynchronisation could limit the accuracy
of the analysis. Our methodology resolves this by storing
multivariate data extracted from both data flow and the
control flow.

Outline: The following is organized as follow: we introduce
our methodology in Sec. II then present analysis results on
an unprotected AES-128 implementation in Sec. III working
on the one hand on real traces measured on an Atmel AVR
XMEGA microcontroller or on the other hand on traces
generated with GDB. Performance of our method are discussed
in Sec. IV.

II. SETUP

In our method, we use GDB, the GNU project debugger, as
assembly-level debugger. This tool supports many program-
ming languages and several operating-systems (OS) [5]. To
make the method general and easy to setup, we suggest not
to use cross-compilation, but rather to work directly on the
host machine (in our case, a 64-bit x86 architecture), since the
final device is not considered. We use as main side-channel the
accumulator register (RAX), on account of its use in arithmetic
operations to store results and functions return value.

A. Using GDB to extract data as a side-channel.

We recall in this section the basic commands to compile &
debug a program. One assumes that the source code named
a.c is a software implementation of a cryptosystem written
in the C programming language. Using the GNU Compiler
Collection (GCC), the simplest Linux command to create the
executable a.out with debugging information is $ gcc -g
a.c, where the -g GCC option is used to keep track of the
link between machine code and source code.

Then, one starts GDB with the binary file a.out as
parameter. We then monitor the selected registers by placing a
watchpoint on them, the watch command beeing applied on
the name of the targeted register e.g., (gdb) watch $rax.

In addition to data registers, the instruction pointer register
RIP1 is also informative, especially for traces resynchroniza-
tion. The state-of-the-art method consists in resynchronising
traces through data analysis. In this article, we use an new
alternative method by leveraging RIP register values, namely
program counters (PC), to resynchronise the data leakage
traces. Hence when PC series are the same for all the datasets,
the traces are properly synchronised.

Key and plaintext are set within GDB then the program is
run until its end using the continue command. In order to
focus on the relevant values, constant register values are saved
as ones and register modifications are monitored.

We stress that each register can be viewed as a potential
source of side-channel leakages. Advantageously these traces
can be analysed without leakage model by considering directly
raw values for improved performances.

The different steps needed to extract n traces are sum-
marised in Fig. 1.

B. Analysis.

Each set of samples represents an execution trace. One
analyses them with the Normalized Inter-Class Variance
(NICV) [6] as metric to detect the leakages—it detects the
worst leakages with few traces, thereby reducing the sample
range to analyse, and speeding up the process—and the Cor-
relation Power Analysis (CPA) [7] to perform attacks on the
relevant samples—the CPA is used to recover the secret key.
Using the CPA, the greatest Pearson correlation coefficient on
the considered sample indicates the best subkey guess among

1RIP is also called Program Counter register (PC). Contrary to RIP, this
denomination does not depend on the working architecture.

all the possibilities. If this guess corresponds to the correct
subkey, then this last one is broken. Such evaluation assumes
a white-box attacker [8] since one knows the secret key and
one needs to access the memory thanks to registers.

If the traces are synchronised, then each sample corresponds
to only one program counter. For this reason, if the best guess
is the correct subkey, then one stores the index numbers of
all the correlation peaks, i.e. those corresponding to all the
coefficients of the best guess, greater than the maximum of the
second best guess. In fact, each of these maximal coefficients
can be used to recover the correct subkey among all guesses;
that is why each peak must disappear by fixing, afterwards by
the developer, the corresponding leaking instruction.

C. Extraction of the leaking instructions.

In the following, we assume that all the samples are
synchronised. We have now a list of time indices where the
implementation leaks. In order to pinpoint these leakages in
the binary, one needs to identify the leaking instructions. Since
the stored PCs (and their matched registers value) are only
the ones corresponding to the reference time indices, we just
need to look at the source instruction and/or the assembly
instructions at each activated watchpoint.

III. RESULTS

We apply our method on an unprotected AES-128 imple-
mentation [9] written in C provided as part of the CHES
2016 CtF challenge2. The same analysis is here performed
on two datasets: real SCA traces (III-A) compared with traces
generated with GDB as explained above (III-B).

A. Real traces.

First, we use the real traces provided by the challenge3. We
use the version with a known fixed key and random plaintexts.
Fig. 2 illustrates some of these real traces.

Ten curves are superimposed in grey. The repetition of a
pair of two distinct patterns is clearly visible eight times.
In order to highlight the structure of the AES algorithm, we
represent the mean of all the traces in blue. This removes the
data dependency, while keeping the control flow information.
This last curve is superimposed on the others at the beginning
of the first pattern, but it quickly decays over time because of
a lack of synchronisation that piles up. The standard deviation
represented in green color highlights the same fact. Both
statistics reveal clearly eight AES rounds.

Secondly, we attack the first AES round without synchro-
nising it. Please note, however, that the physical behaviour
of a device is to leak the sum of the bits, because each
register leaks one value and the power consumption is additive.
Now, the leakage model for the CPA must correspond to the

2This implementation can be found as “Stagegate #1”, at ctf.newae.com/
flags.

3They have been automatically captured on a ChipWhisperer-Lite—which
is a capture hardware dedicated to side-channel analysis—using an Atmel
XMEGA firmware.

ctf.newae.com/flags
ctf.newae.com/flags

Source code
Compiler−→ Binary file

Debugger−→ Data
Synchronisation−→ Traces

a.c
gcc7−→ a.out

gdb7−→
n times

a.gdblog
Parsing7−→ a.gdbtra

Figure 1. Traces generation using GDB.

Figure 2. Some curves, along with some statistics, amongst the 1,000 recorded
of an unprotected AES-128 implementation.

Figure 3. CPAs performed with L1 on 1,000 recorded traces. X axis represents
the time, and Y axis the correlation coefficient. All the subkey hypotheses are
denoted in grey, and the correct subkeys are denoted in red.

leakages, hence we use the Hamming weight as leakage model.
Therefore we use the leakage function

L1(p[i]) = HW(SBox[p[i]⊕ k[i]]) (1)

where p[i] and k[i] denote the plaintext and the key bytes i
(1 ≤ i ≤ 16) respectively. The analysis is done for all the
sixteen key bytes; nevertheless, for the sake of clarity, results
for only the bytes 3 and 4 are shown in Fig. 3. The grey
curves represent the correlation coefficients obtained for all
the 256 subkey hypotheses. The correct subkeys are depicted
in red and present high peaks of correlation up to 0.8. Even
if the number of peaks is not the same for all subkeys, the
great difference between the red curve and the grey curve
maxima could mean that any attacker would be able to find
the correct key easily, i.e. with only few traces. As expected,
all the subkeys are broken so this implementation is not secure
against such side-channel attacks.

B. Comparison with our target agnostic GDB method.

Now, we use the GDB method to generate traces. Thanks
to the PCs stored in parallel to the RAX values, we are able
to find the start and the end of any AES operation for each
trace; thus we cut the extra part before and after the first AES
round, and thereby aligning all the traces on its first sample.

On such GDB traces, state-of-the-art SCA trace resynchro-
nisation methods [10], [11], [12] are inappropriate because
no external noise affects our traces nor low-pass filtering
stage allowing to average instant variations over time leaving
more evidence in the traces for the scheduling of the algo-
rithm. That is why we have been pushed to devise a novel
resynchronisation technique based on a bi-variate side-channel
measurement: we extract the pair made up of the accumulator
and the PC. The former contains the leakage about the data
whereas the latter contains the information about the position
in the code, i.e., the schedule of the algorithm. In order to
perform the synchronisation, first, one constructs PC’s timeline
according to reference instructions, then, one uses a local
instruction insertion or drop.

In this case, the desynchronisation comes from the xtime
function and the conditional branch defined by the source
instructions if (x & 0x80) {...} and else {...}
which introduce the respective assembly instructions jns (for
“Jump No Sign”, a conditional jump which makes a jump if
MSB(x) = 0) and jmp. When the synchronisation is done, all
the AES functions can be exactly delimited according to the
PCs, as illustrated on traces obtained by our GDB method in
Fig. 4. This definitely allows to reverse-engineer the structure
of the algorithm under analysis, as already noted in [13].

Figure 4. Some curves, along with some statistics, amongst the 1,000
generated with GDB. These traces have been synchronised and the functions
are delimited (the xtime function is intentionally not delimited on this figure).
The sample is the whole AES first round.

Figure 5. CPAs performed with L2 on 1,000 GDB traces after synchroni-
sation. X axis represents the instruction count, and Y axis the correlation
coefficient. All the subkey hypotheses are denoted in grey, and the correct
subkeys are denoted in red.

We perform a new CPA on this first AES round without
using any leakage model, since RAX values can be directly
measured. So the leakage function becomes:

L2(p[i]) = SBox[p[i]⊕ k[i]] (2)

Compared to (1), we can get rid of the non-injective HW
function, which will definitely make former analyses more
accurate. As previously, we illustrate in Fig. 5 the results for
only the bytes 3 and 4. For each byte, the grey correlation
coefficients approximately reach 0.2, whereas the red curves
have several distinct correlation peaks, all equal to 1. There
are three correlation peaks for each byte, as well as many
others for the byte 3. All these peaks allow an attacker to
break all the secret key bytes with few traces, which confirms
that this AES-128 implementation is not secure against first-
order side-channel attacks. Furthermore, they are all equal to
1, i.e. the correlation peaks exactly match the leaking assembly
instructions, so we store their index numbers.

To further investigate the leakage instructions after syn-
chronisation, we illustrate the analysis on subkey 4. The first
source of leakage is data movement instructions (mov and
movzbl) occuring during bytes copy of the MixColumns
operation. Another source of leakage comes from a Xor
operation between some of these bytes. Finally, the last ones
come from a Xor and a data movement instructions using the
result of the xtime function. Each of these leakages appears
with the handling of one part of RAX.

C. Discussion.

It appears that the number of successive peaks for each
byte with GDB traces (Fig. 5) matches the number of peaks
series found for the same bytes with real traces (Fig. 3). Yet
the analysis conditions are not the same: the real traces have
been obtained using an Atmel AVR XMEGA microcontroller,
i.e. using 8/16-bit CPU with a pipeline, whereas the GDB
traces have been generated with a 64-bit x86 architecture with
cache. There is nothing in common between both methods.
This demonstrates that one can highlight the leakages of a
cryptographic code in spite of the architecture. Leakage is thus
intrinsic to the C source code; hence the robustness of the
present methodology because it allows one to perform side-
channel evaluation of a software without any device.

Moreover, the correlation obtained with (2) is bijective with
the secret key, i.e. no information is lost, whereas (1) is non-
injective. So the correlation reachs 1.0 in Fig. 5, contrary to
Fig. 3.

IV. CONCLUSION

The GDB method is a powerful tool for side-channel
evaluation. It allows one to anticipate the use of a cryptosystem
in a software and its weakness against such physical attacks.
Indeed, this methodology is effective for finding real side-
channel leakages considering only numerical values, without
the need of taking into account the final device. Besides, it
enables really precise evaluations, especially the delimitation
of the operations and the extraction of the leaking assembly
instructions. Ultimately, because this first (and difficult) step
in writing secure software against first-order attacks is to know
where the device leaks, the last benefit of this method is
substantial: it enables to pinpoint flaws in the protections.

REFERENCES

[1] A. Moradi, S. Guilley, and A. Heuser, “Detecting hidden leakages,”
in Applied Cryptography and Network Security - 12th International
Conference, ACNS 2014, Lausanne, Switzerland, June 10-13, 2014.
Proceedings, 2014, pp. 324–342.

[2] J. den Hartog, J. Verschuren, E. P. de Vink, J. de Vos, and W. Wiersma,
“PINPAS: A tool for power analysis of smartcards,” in Security and
Privacy in the Age of Uncertainty, IFIP TC11 18th International Con-
ference on Information Security (SEC2003), May 26-28, 2003, Athens,
Greece, 2003, pp. 453–457.

[3] C. Thuillet, P. Andouard, and O. Ly, “A Smart Card Power Analysis
Simulator,” in CSE (2), 2009, pp. 847–852.

[4] G. Barthe, S. Belaı̈d, F. Dupressoir, P. Fouque, B. Grégoire, and P. Strub,
“Verified Proofs of Higher-Order Masking,” in Advances in Cryptology
- EUROCRYPT 2015 - 34th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,
April 26-30, 2015, Proceedings, Part I, 2015, pp. 457–485.

[5] R. Stallman, R. Pesch, and S. Shebs, “Debugging with gdb: The gnu
Source-Level Debugger Ninth Edition, for gdb version 20040217,” 2012.

[6] S. Bhasin, J.-L. Danger, S. Guilley, and Z. Najm, “NICV: Normalized
Inter-Class Variance for Detection of Side-Channel Leakage,” in Interna-
tional Symposium on Electromagnetic Compatibility (EMC ’14 / Tokyo).
IEEE, May 12-16 2014.

[7] É. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a
leakage model,” in Cryptographic Hardware and Embedded Systems -
CHES 2004: 6th International Workshop Cambridge, MA, USA, August
11-13, 2004. Proceedings, 2004, pp. 16–29.

[8] B. Preneel and B. Wyseur, “White-box cryptography,” 2008.
[9] NIST FIPS, “197: Advanced encryption standard (AES),” Federal In-

formation Processing Standards Publication, vol. 197, no. 441, p. 0311,
2001.

[10] N. Homma, S. Nagashima, Y. Imai, T. Aoki, and A. Satoh, “High-
Resolution Side-Channel Attack Using Phase-Based Waveform Match-
ing,” in CHES, ser. LNCS, vol. 4249. Springer, October 10-13 2006,
pp. 187–200, Yokohama, Japan.

[11] S. Guilley, K. Khalfallah, V. Lomne, and J.-L. Danger, “Formal Frame-
work for the Evaluation of Waveform Resynchronization Algorithms,”
in WISTP: Information Security Theory and Practices. Smart Cards,
Mobile and Ubiquitous Computing, ser. LNCS, LNCS, Ed., vol. 6633.
Springer, June 1-3 2011, pp. 100–115, Heraklion, Greece.

[12] J. G. J. van Woudenberg, M. F. Witteman, and B. Bakker, “Improving
Differential Power Analysis by Elastic Alignment,” in CT-RSA, 2011,
pp. 104–119.

[13] J. W. Bos, C. Hubain, W. Michiels, and P. Teuwen, “Differential
computation analysis: Hiding your white-box designs is not enough,”
in Cryptographic Hardware and Embedded Systems – CHES 2016, ser.
Lecture Notes in Computer Science, B. Gierlichs and A. Y. Poschmann,
Eds., vol. 9813. Springer Berlin Heidelberg, 2016, pp. 215–236.

