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Abstract Side-channel attacks allow to extract secret

keys from embedded systems like smartcards or smart-

phones. In practice, the side-channel signal is measured

as a trace consisting of several samples. Also, several

sensitive bits are manipulated in parallel, each leaking

differently. Therefore, the informed attacker needs to

devise side-channel distinguishers that can handle both

multivariate leakages and multiple models. In the state-

of-the-art, these two issues have two independent solu-

tions: on the one hand, dimensionality reduction can

cope with multivariate leakage; on the other hand, on-

line stochastic approach can cope with multiple models.

In this paper, we combine both solutions to derive

closed-form expressions of the resulting optimal distin-

guisher in terms of matrix operations, in all situations

where the model can be either profiled offline or re-

gressed online. Optimality here means that the suc-

cess rate is maximized for a given number of traces.

We recover known results for uni- and bi-variate mod-

els (including correlation power analysis), and investi-

gate novel distinguishers for multiple models with more

than two parameters. In addition, following ideas from

the AsiaCrypt’2013 paper “Behind the Scene of Side-

Channel Attacks”, we provide fast computation algo-

rithms in which the traces are accumulated prior to

computing the distinguisher values.
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4 CMAP, École polytechnique, Université Paris-Saclay, 91 128
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1 Introduction

Side-channel attacks allow to extract secret keys from

cryptographic devices. Template attacks [?] have been

introduced as the strongest analysis method. They con-

sist in two phases: (i) a profiling offline phase were the

leakage model of the device under attack is character-

ized; (ii) an attack online phase in which the secret

key is extracted using fresh measurements along with

the pre-characterized model. Such attacks are known

to use a maximum likelihood principle to ensure the

highest possible success probability (see, eg., [?]).

In this paper we study optimal attacks with the best

possible success probability when extracting the secret

key1. We leverage on such optimal distinguishers to an-

swer the following question: how to attack with the best

probability of success when the leakage is multivariate

and the model are multiple? An initial empirical2 work

has already been carried out in [?] which confirmed that

this type of approach can be very fruitful3.

1 The success probability in key recovery is chosen as a
figure of merit for optimization. Such an objective is typical
of “pure” side-channel attacks. Other approaches [?,?,?] relax
the condition that the key found by the side-channel analysis
be ranked first and complements it with a key enumeration
stage. This yields a data vs. complexity tradeoff that is not
explored in this paper.
2 The work in [?] does not detail the modus operandi result

for the regression neither plugs it into the distinguisher, which
is incidentally not chosen to be the optimal one.
3 Multi-target attacks [?,?] have a somewhat different goal,

namely the best aggregation of information about several sub-
parts of a key, possibly leaking at different times with differ-
ent models, in order to recover the full key efficiently. Here
we consider only one multivariate leakage model and focus
on recovering one subpart of the key. However, our deriva-
tion is capable of handling multivariate leakages and models
and may still be combined with the multi-target approaches.
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Contributions. We derive closed-form expressions for

the optimal distinguishers in all situations where the

model is known (e.g., using profiling) or regressed on-

line. In the case of a known univariate model, we re-

cover the results in [?], However, our “fully matrix”

formalism makes equations simpler and proofs shorter.

Moreover, compared to [?] we extend the leakage model

to the case where the traces are not necessarily cen-

tered, thereby allowing a more natural application on

real traces. In the realistic “(on-line) stochastic attack”

situation where the model is parametric, i.e. where the

coefficients of the model are unknown, we express the

optimal distinguisher by maximizing success over the

whole set of possible coefficients. Finally, we provide

fast computation algorithms for our novel distinguish-

ers, which happen to be remarkably simple and efficient.

Outline. The remainder of this paper is organized as

follows. Sec. 2 provides a modelization of a side-channel

attack that is generic4 enough to capture many differ-

ent multivariate scenarios The main results of this pa-

per are outlined in Sec. 3. Sec. 4 presents experimental

results on simulated traces and real-world acquisition

campaigns. Conclusions and perspectives are in Sec. 5.

2 Notations and Leakage Model

2.1 Notations

We letX denote the leakage measurements, Y the model,

N the measurement noise, and α the link between the

model and the measurements5. The model Y depends

on a key guess k, an n-bit vector, and on some known

text T (usually also an n-bit vector) e.g., through a

function φ such that Y = φ(T, k). A well-known exam-

ple is Y = wH(T⊕k), where wH is the Hamming weight

function. However, in general, some parameters of the

model are unknown. To remain generic, we do not de-

tail further the link between Y and the pair (T, k). As

it is customary in side-channel analysis, the correct key

is denoted by k?. The corresponding model using the

correct key Y (k?) is denoted by Y ?.

Let Q be the number of queries (number of measure-

ments), D be the data dimensionality (number of time

samples per measurement trace) and S be the model di-

mensionality (φ : Fn2 ×Fn2 → RS is a vectorial function,

4 By generic, we qualify a leakage model more complex than
the classical Hamming weight or distance, where each bit of
the sensitive variable has different strengths of leakage (situ-
ation we will show to happen in practice).
5 Notations X,Y are consistent with the usual convention

in machine learning, where X is for the collected data and Y

for the classification labels.

with S components). Roman letters in bold indicate

vectors or matrices that have a dimension in Q, i.e.,

which are different for each trace q = 1, 2, . . . , Q. More

precisely, X represents the full attack campaign, a ma-

trix of D ×Q measurement samples. The q-th trace is

denoted Xq which is a D × 1 column vector. Similarly,

for the q-th trace, the S×1 column vector Yq represents

the deterministic part of the model while the D×1 col-

umn vector Nq is the corresponding measurement noise

with D ×D correlation matrix Σ.

We denote by tr (·) the trace of a square matrix, that

is the sum of its diagonal terms. Note that tr (AB) =

tr (BA) for compatible matrix dimensions. Let ‖·‖2 de-

note the Euclidean norm of a 1 × Q row vector. Thus

‖X‖22 = XXT = tr
(
XTX

)
, where ( · )T is the transpo-

sition operator. Finally let ‖ · ‖F denote the Frobenius

norm of a matrix (square root of the sum of its squared

elements), such that ‖M‖2F = tr
(
MMT

)
.

2.2 General Model

We make the following simplifying assumptions. First,

the (environmental) noise is steady, e.g., chip temper-

ature and supply voltage do not vary during the side-

channel measurements. Thus N1, N2, . . . , NQ are inde-

pendent and identically distributed (i.i.d.) (denoted by

N with index q dropped). Second, the attacker does

not inject partial information gathered from the leakage

analysis into a possible choice of plaintexts/ciphertexts

(nonadaptive attack)6. Thus Y1, Y2, . . . , YQ are assumed

i.i.d. (denoted by Y ). Under the adopted leakage model

it follows that the leakage measurementsX1, X2, . . . , XQ

are also i.i.d. (denoted by X).

A distinguisher D maps a collection of leakages x

and texts t to an estimation of the secret key k?. Let us

recall that x and t are realizations of random variables

X and T: x is a D × Q matrix of real numbers (the

acquisition campaign) and t is a 1 × Q vector of n-bit

words (bytes when n = 8) which are the publicly known

plaintext or ciphertext bytes. An optimal distinguisher

maximizes the probability of success D(x, t) = k?.

The simplest situation occurs when X consists in a

modulation of Y plus noise, in which case we let α be

the signal envelope. In real traces, however, we face the

more general situation where the model can be offset by

some quantity the general case being an S-dimensional

parametric model with S ≥ 2 components. For this rea-

son, we consider α as a D × S matrix and we set in

6 In fact, our results tolerate chosen texts, but consider
them as observed inputs to the attack. We do not optimize
the attack according to chosen inputs.
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matrix notation

X = αY? + N (1)

where X is D ×Q, α is D × S, Y? is S ×Q, and N is

D × Q. Notice that our convention to consider traces

as lines and dimensions as rows allows us to write the

deterministic part of the leakage as αY? which writes

more naturally than the opposite order where traces

would be viewed as a vertical time series7.

We notice that in the state-of-the-art, monovariate

leakage models are assumed vectorial in the context

where they are considered unknown pseudo-Boolean func-

tions of the pair (T, k). In this paper, we highlight that

these coefficients extend to waveforms in the context

of multivariate leakage, and thus take on a physical in-

terpretation of leakage models as a sum of waveforms

resulting from the leakage of individual resources. This

means that seeing α as D lines, each representing the

series of S weights, is awkward, since not related to the

way the multivariate leakage is built from the processed

data. Instead, it is natural to see α as S columns, each

representing the waveform which is generated by one

coordinate of model Y .

For each trace q = 1, 2, . . . , Q, we assume that the

vector N = Nq follows that same multivariate normal

distribution N (0, Σ), where the D×D correlation ma-

trix Σ = E(NNT) is assumed known to the attacker8.

Since Σ is assumed symmetric positive definite, there

exists a matrix Σ1/2, which is such that Σ1/2Σ1/2 = Σ.

We refer to Σ1/2 as the standard deviation noise ma-

trix.

The model (1) used throughout the paper is quite

generic and has multiple facets depending on the choice

of S and the respective values given to α and Y . This

is discussed next.

2.3 Examples with S = 2 and S = 9

For S = 1, the traces consist only in a modulation

of the model plus noise as in [?, ?]. When consider-

ing traces that are not only modulated but also have

an offset term we have S = 2. We then write the 2-

dimensional model as ( Y
1 ), where Y and 1 are 1 × Q

matrices (Y1, Y2, . . . , YQ) and (1, 1, . . . , 1). The D × 2

matrix α in (1) actually takes the special form (α β)

where β is the offset value.

7 We underline that Y? denotes the model for the correct
key; we use Y(k) for a model assuming a guessed key k. Some-
times, in a view to make notations more legible, the depen-
dence in k is tacit and Y(k) simply writes as Y.
8 We may simplify (2) by incorporating β1 into the noise

expectation, but the noise is intrinsically zero-mean and it is
clearer to exhibit a specific offset term.

An illustration is provided in Fig. 1 where the pa-

rameter β ∈ RD is the waveform when there is no sig-

nal, whereas α ∈ RD is the signal envelope. The com-

plete model is the sum αY +β, where Y is the Hamming

weight of some intermediate variable (such as the XOR

operation T⊕k) on n = 4 bits. While the leakage signal

may be represented as a continuous curve as illustrated

in Fig. 1, the practical acquisition consists in a tempo-

ral series of D “discrete samples”, typically within one

clock period. For S = 2, we thus write (1) as

X = αY? + β1 + N (2)

where X is D × Q, α and β are D × 1, Y? and 1 =

(1, . . . , 1) are 1×Q, and N is D×Q. Here Y is assumed

centered: E(Y) = 0 = (0, . . . , 0) (since the non-centered

part is captured by the β1 term) and of unit variance

for every q: Var(Yq) = E(Y 2
q ) = 1.

For S ≥ 2, the actual value of S reflects the com-

plexity of the model. For example, in the weighted sum

of bits model, the model for each trace can be written

as
∑n
s=1 αsYs + β, where Ys is the sth bit of the n-bit

sensitive variable Y . Accordingly, we have

S = n+ 1, and thus:

α =
(
α1 . . . αn β

)
, Y = (Y1 . . .Yn 1)

T
. (3)

This leakage model is more complex than before

but may arise in practice. For example, Fig. 2 plots

the coefficients α1, . . . , α8 estimated of the traces taken

from an ATMega smartcard—the datasets are available

from the DPA contest V4 team [?]. In particular one

can observe that samples around [50, 80] are ordered

by Hamming weight: this part of the trace resembles

the upper left part of Fig. 1 for S = 2. By analysing

the (n+1)-variate model of (3), one can indeed see that

around [50, 80], the vectors α1, . . . , α8 are almost identi-

cal. However, samples in intervals [170, 250] or [330, 400]

have a more complex model. These times, the eight vec-

tors α1, . . . , α8 are clearly different, so the leakage is

9-variate.

In the sequel, we consider both types of attacks:

those with offline profiling where α for each component

of the model is precharacterized like in Fig. 2 and also

those where the model is learned online like in a Linear

Regression Attack [?].

3 Theoretical Results and Implementation

3.1 General Mathematical Expressions

In this section we derive the mathematical expression of

the optimal distinguisher D in the general case of mul-

tivariate leakage (D ≥ 1), and multiple models (S ≥ 1).
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Fig. 1 Example of leakage model with S = 2 and a model in Hamming weight, with n = 4 values (no noise is added)

S = 9S = 2 S = 9

Fig. 2 Leakage evaluation of traces from DPA contest V4
(knowing the mask)

An illustration of our results is given in Fig. 3 for the

case when the leakage is completely known (or profiled

as in the template attack) and when the leakage is un-

known and estimated online.

Definition 1 (Optimal Distinguisher Knowing or

Ignoring α)

DML(x, t) = argmax
k∈F2

p(x|t) and

DML,sto(x, t) = argmax
k∈F2

max
α∈RD×S

p(x|t, α).

In both cases (Theorems 1 and 2 below) the result

is a distinguisher which is computed using simple ma-

trix operations. While DML resembles a template attack

with Gaussian templates [?], DML,sto is a novel expres-

sion that results from a non-trivial maximization over

the matrix α and may be interpreted as a generalization

of a multivariate correlation power attack [?].

Theorem 1 The optimal maximum likelihood (ML)

distinguisher [?] for Gaussian noise writes

DML(x, t) = argmin
k

tr
(

(x− αy)
T
Σ−1(x− αy)

)
. (4)

Proof From [?] we have DML(x, t) = argmaxk p(x|y)

while from (1) we see that p(x|y) = pN(x− αy). From

the i.i.d. assumption the noise density pN(n) is given

by

pN(n) =

Q∏

q=1

1√
(2π)D|detΣ|

exp−1

2
nq

TΣ−1nq

=
1

(2π)DQ/2
1

(detΣ)Q/2
exp−1

2

( Q∑

q=1

nq
TΣ−1nq

)

=
1

(2π)DQ/2(detΣ)Q/2
exp−1

2
tr
(
nTΣ−1n

)
.

Thus pN(x − αy) is maximum when the expression

tr
(
nTΣ−1n

)
for n = x− αy is minimum. ut

In Eqn. (4) of Theorem 1, the trace

tr
(

(x− αy)
T
Σ−1(x− αy)

)

consists in:

– the sum of Q Mahalanobis [?] distances (see also

Eqn. (22) of [?]),

– the sum of D elements (which is useful when D �
Q), as attested by rewriting

tr

(
(x− αy)

T
Σ−1(x− αy)︸ ︷︷ ︸

Q×Q matrix

)
=

tr

(
Σ−1(x− αy)(x− αy)

T

︸ ︷︷ ︸
D×D matrix

)
.

Theorem 2 The optimal stochastic multivariate attack

is given by

DML,sto(x, t) = argmax
k∈Fn

2

tr
(
yT(yyT)−1y xTΣ−1x

)

(5)
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Is α
known?

DML(x, t) = argmink tr
(
(x− αy)TΣ−1(x− αy)

)
yes

Leakage model: Optimal distinguisher:

x = αy⋆ + n
∀q, nq ∼ N (0,Σ)
y⋆ = φ(t, k⋆)
y = φ(t, k)

noα ∈ RD×S,Σ ∈ RD×D

See section ??, Theorem ??

See section ??, Theorem ??

x ∈ RD×Q,y ∈ RS×Q DML,sto(x, t) = argmaxk tr
(
yT(yyT)−1y xTΣ−1x

)

Fig. 3 Mathematical expression for multivariate (D ≥ 1) optimal attacks with a linear combination of models (S ≥ 1)

for which the optimal value of α is given by

αopt = (xyT)(yyT)−1. (6)

For the proof, we need some known results of linear

algebra (Lemma 1) and linear regression (Lemma 2).

Lemma 1 Let b an S × Q matrix, with S < Q. The

S × S matrix bbT is invertible if and only if b has

full rank S, i.e., if and only if the S lines of b are

independent.

Proof Let x be a S × 1 column vector. We have that

xTbbTx = ‖bTx‖2 = 0 implies bTx = 0 hence x = 0.

Hence the matrix bbT is positive definite. ut

Lemma 2 Let a, b and α be respectively 1×Q, S×Q
and 1 × S with S < Q, where b has full rank S. Then

‖a− αb‖2 reaches its minimum for α = abT(bbT)−1.

Proof Expanding the squared norm gives ‖a− αb‖22 =

(a− αb)(a− αb)
T

= aaT − 2αbaT + αbbTαT. There-

fore, the gradient ∂
∂α‖a − αb‖22 = −2baT + 2bbTαT

vanishes if and only if αT = (bbT)−1baT, i.e., α =

abT(bbT)−1 where we have used the fact that bbT is

invertible by Lemma 1. ut

Proof (Proof of Theorem 2) Let x′ = Σ−1/2 x and

y′ = (yyT)−1/2 y. The optimal distinguisher minimizes

the following expression over α ∈ RD×S :

tr
(

(x− αy)
T
Σ−1(x− αy)

)

= tr
(

(x′ − α′y)(x′ − α′y)
T
)

=

D∑

d=1

‖x′d − α′dy‖2.

By Lemma 2 the minimization over α′d yields α′d =

(x′dy
T)(yyT)−1 for all d = 1, . . . , D. This gives α′ =

(x′yT)(yyT)−1 hence α = (xyT)(yyT)−1, which re-

markably does not depend on Σ.

The minimized value of the distinguisher is thus

min
α

tr
(

(x− αy)
T
Σ−1(x− αy)

)

= tr
(

(x− αopty)
T
Σ−1(x− αopty)

)

= tr
(
(Id− yT(yyT)−1)2xTΣ−1x

)

= tr
(
xTΣ−1x

)
− tr

(
yT(yyT)−1 xTΣ−1x

)

where Id denotes the D×D identity matrix and where

tr
(
xTΣ−1x

)
is a constant independent of k. This proves

Theorem 2. ut

The expression of DML,sto(x, t) given in Theorem 2

consists in the trace of a Q × Q matrix, which can be

admittedly very large. It can be, however, rewritten in

a way that is easier to compute when Q is much greater

than S and D:

Corollary 1 (Alternative Expression of DML,sto)

Letting x′ = Σ−1/2 x, and y′ = (yyT)−1/2 y as in the

proof of Theorem 2, we have

DML,sto(x, t) = argmax
k∈Fn

2

‖x′y′T‖F . (7)

Here the Frobenius norm is of a D × S matrix.

Proof Let us write (yyT)−1 = (yyT)−1/2(yyT)−1/2 in

(5). By the properties of the trace,

tr
(
yT(yyT)−1y xTΣ−1x

)

= tr



(

(yyT)−
1
2 y(Σ−

1
2 x)

T)

︸ ︷︷ ︸
S ×D

(
(yyT)−

1
2 y(Σ−

1
2 x)

T)T

︸ ︷︷ ︸
D × S




= tr
(

(y′x′
T

)(y′x′
T

)
T)

= ‖x′y′T‖2F . ut

Remark 1 Notice that in corollary 1, y′ is a vector of

empirical covariance equal to the identity matrix. In-

deed, y′y′
T

= (yyT)−1/2yyT(yyT)−1/2 = Id.
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3.2 Mathematical Expressions for S = 2

In order to provide interpretations for the optimal dis-

tinguisher expressions, we detail how an optimal attack

unfolds when the leakage consists in a sum of a mod-

ulated scalar model and an offset (S = 2). The cases

for profiled attacks (denoted DS=2
ML ) and non-profiled

attacks (denoted DS=2
ML,sto) are presented in Fig. 4.

Interestingly, when S = 2, the template attack can

decompose in two steps (affine projection followed by

a Euclidean distance to the model). Remarkably, the

projection vector is the same for all key guesses. This

extends similar results [?] where only the linear rela-

tionship between leakage and model is explored. As for

the online attack, DS=2
ML,sto consists in a sum of square

of CPA attacks on transformed data, aiming at orthog-

onalizing the noise.

3.3 Efficient Implementation

Both DML and DML,sto can be optimized using the idea

presented in [?]. This article applies a precomputation

step in the case the number of traces is larger than

the number of possible plaintexts (Q > #T = 2n). In

this case, all summations
∑
q can be advantageously

replaced by
∑
t

∑
tq=t

. In most cases, the sum
∑
tq=t

can be achieved on the fly, and does not involve an

hypothesis on the key. Therefore, a speed gain of 2n

(the cardinality of the key space) is expected.

Such optimization strategy can be applied to DML.

Indeed, let us define x′ = Σ−1/2x and α′ = Σ−1/2α.

Then,

DML(x, t) = argmin
k

D∑

d=1

‖x′d − α′dy‖22 (see Corollary 1)

= argmin
k

D∑

d=1

∑

t∈Fn
2


 ∑

q/tq=t

x′d,q
2 − 2

∑

q/tq=t

x′d,qα
′
dy(t, k) + (

∑

q/tq=t

1)(α′dy(t, k))2




= argmin
k

D∑

d=1

∑

t∈Fn
2

−2
( ∑

q/tq=t

x′d,q

)

︸ ︷︷ ︸
denoted as x′d,t

α′dy(t, k) +
( ∑

q/tq=t

1
)

︸ ︷︷ ︸
denoted as nt

(α′dy(t, k))2

(8)

= argmax
k

tr
(
x′(α′y(k))

T
)
− 1

2

∑

t∈Fn
2

nt ‖α′y(t, k)‖22 .

(9)

Notice that at line (8), the term
∑
q/tq=t

x′d,q
2

which

does not depend on the key, is simplified. The fast ver-

sion of this computation is given in Alg. 1.

The same optimization applies to DML,sto. Indeed,

in expression (7) of DML,sto(x, t) = argmaxk ‖x′y′T‖2F ,

input : x, t
output: DML(x, t)

// Initialize to zero a matrix x′d,t of size D×2n

// Initialize to zero a vector nt of length 2n

1 for q ∈ {1, . . . , Q} do // On-the-fly accumulation

2 x′tq ← x′tq +Σ−1/2xq

3 ntq ← ntq + 1

4 return // Single evaluation, as in (9)

argmaxk∈K tr
(
x′(α′y(k))T

)
− 1

2

∑
t nt ‖α′y(t, k)‖22

Algorithm 1: Fast computation algorithm for

DML

one can write

‖x′y′T‖2F =
∑

s,d

( Q∑

q=1

x′d,qy
′
s,q

)2

=
∑

s,d

(∑

t∈Fn
2

(∑
q/tq=t

x′d,t

)

︸ ︷︷ ︸
denoted as x′d,t

(
y′s(t, k)

)

︸ ︷︷ ︸
denoted as y′s,t

)2
. (10)

This means that x′ can be obtained by simple accumu-

lation, exactly as in line 2 of Alg. 1. The term y′s(t, k)

requires the computation of yyT. In the case Q � 1,

it can be assumed that the texts t are uniformly dis-

tributed. Hence, when Q → +∞, by the law of large

numbers,

1

Q
yyT =

1

Q

Q∑

q=1

yqyq
T =

∑

t∈Fn
2

∑
q/tq=t

1

Q
y(t, k)y(t, k)

T

−−−−−→
Q→+∞

1

2n

∑

t∈Fn
2

y(t, k)y(t, k)
T
.

Therefore, in (10), y′s(t) can also be precomputed. To

the best of our knowledge, this optimization has never

been discussed previously. The resulting distinguishing

procedure is given in Alg. 2. At line 3, the argument of

the Frobenius norm can be computed by a fast matrix

multiplication. Also, we notice that the matrix inversion

at line 0 is actually a precomputation which involves

only the model. Besides, if the EIS (Equal Images under

all Sub-keys) assumption holds [?, Def. 2], e.g., y(t, k)

only depends on t⊕ k, then
∑
t y(t, k)y(t, k)

T
does not

depend on k, hence only one single matrix inversion to

compute. Eventually, the computational complexity of

the optimal stochastic attack simply consists in traces

accumulation per class, and as many matrix products

and Frobenius norms as keys to be guessed.
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α, β ∈ RD×1,Σ ∈ RD×D
x ∈ RD×Q,y ∈ R1×Qx = αy⋆ + β1+ n

∀q, nq ∼ N (0,Σ)
y⋆ = φ(t, k⋆)
y = φ(t, k)

Affine projection: Data transformation:

Leakage model:

yes noknown?
Are α, β

Univariate ML attack: New multivariate CPA attack:

x̃ = αTΣ−1

αTΣ−1α
(x− β1) ∈ R1×Q x′ = Σ−1/2x

DS=2
ML (x, t) = argmink ||x̃− y||22 DS=2

ML,sto(x, t) = argmaxk
∑D

d=1
Ĉov(x′

d,y)
2

V̂ar(y)

Fig. 4 Modus operandi for multivariate (D ≥ 1) optimal attacks with one model Y associated to envelope α ∈ RD×1 and a
constant offset β ∈ RD×1 (S = 2)

input : x, t
output: DML,sto(x, t)

0 // Precompute #K = 2n matrices y′(k) of size

S × 2n, s.t.

y′(k) = ( 1
2n

∑
t y(t, k)y(t, k)T)−1/2y(k).

// Initialize to zero a matrix x′d,t of size D×2n

1 for q ∈ {1, . . . , Q} do

2 x′tq ← x′tq +Σ−1/2xq // In-place accumulation

of a column in matrix x′

3 return argmaxk∈K ‖x′y′(k)T‖F // As in (10)

Algorithm 2: Fast computation algorithm for

DML,sto when t is balanced

4 Practical Results

4.1 Characterization of Σ

In this article, we assume that the attacker knows the

noise covariance matrix. We give a straightforward pro-

cedure for the estimation.

1. collect Q traces (i.e., a matrix x ∈ RD×Q) where

the plaintext is fixed to a given value,

2. estimate Σ as Σ̂ = 1
Q−1

(
x− 1

Qx1T1
)(

x− 1
Qx1T1

)T
,

where 1 = (1, . . . , 1) ∈ R1×Q. This estimator is sam-

ple covariance matrix, which is unbiased.

Remark 2 Notice that Σ cannot be obtained by a direct

profiling on the same traces to be used for the attack.

Indeed, in those traces, the plaintext is varying, hence

the attacker would use for Σ̂ the covariance matrix of

x−αopty, where αopt is equal to αopt = (xyT)(yyT)−1

(recall (6)). Hence, Σ̂ = 1
Q−1 (x − αopty)(x− αopty)

T
.

But the distinguisher DML,sto is

DML,sto(x, t)

= argmin
k∈Fn

2

min
α∈RD×S

tr
(

(x− αy)
T
Σ̂−1(x− αy)

)

= argmin
k∈Fn

2

min
α∈RD×S

tr
(
Σ̂−1(x− αy)(x− αy)

T
)

= argmin
k∈Fn

2

tr
(
Σ̂−1(x− αopty)(x− αopty)

T
)

(11)

= argmin
k∈Fn

2

tr
(

(Q− 1)Σ̂−1Σ̂
)

= argmin
k∈Fn

2

D(Q− 1).

(12)

Indeed, at line (11), we demonstrated in the proof of

Theorem 2 in that the minimal value (6) of α is inde-

pendent on Σ. Eventually, it can be seen at line (12)

that the distinguisher with Σ̂ instead of Σ does not

depend on the key9.

4.2 Attacks on Synthetic (i.e., Simulated) Traces

In this subsection we present simulations when α is

known exactly or regressed online. We consider an at-

tack of PRESENT, where the SBox is n = 4 → n = 4.

For the sake of the simulations, we choose two kinds of

α:

9 Indeed, argmink cst = Fn
2 , meaning that all keys are

equiprobable. Intuitively, when both the noise and the model
parameters are regressed at the same time, any key manages
to achieve the same match between parametric model and
side-channel observations.
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– “identical”: all the n = 4 bits leak the same wave-

form, like in the Hamming weight model,

– “proportional”: the waveform has weight 1 for SBox

bit 0, and is multiplied by 2 (resp. 3 and 4) for SBox

bit 1 (resp. 2 and 3).

The waveform for each bit is that represented in Fig. 1

(upper left graph). Specifically, for all 1 ≤ d ≤ D and

1 ≤ s ≤ S, the envelope consists in damped oscillations:

αd,s = e−
2d
D cos

(
2π

d

D

)
for the “identical” case,

(13)

αd,s = s · e− 2d
D cos

(
2π

d

D

)
for the “proportional” case.

(14)

The noise is chosen normal, using two distributions:

– “isotropic”: the covariance matrix is σ2 times the

D ×D identity,

– “auto-regressive” (of “AR” for short): the covari-

ance matrix element at position (d, d′), for 1 ≤ d, d′ ≤
D, is σ2ρ|d−d

′|. This noise is not independent from

sample to its neighbours, but the correlation ρ de-

creases exponentially as samples get further apart.

Proposition 1 The success probability of DML is greater

than that of DML,sto.

Proof Indeed, according to [?], DML maximizes the suc-

cess probability. Thus, the distinguisher DML,sto has a

smaller success probability. The success probability is

the same if the minimization over α in the proof of The-

orem 2 yields the exact matrix α used in the model (1).

ut

Simulations allow to estimate the loss in terms of

efficiency of not knowing the model (Proposition 1), by

comparing distinguishers DML ((4)) and DML,sto ((5)).

The success rate of the optimal distinguisher DML is

drawn in order to materialize the limit between feasible

(below) and unfeasible (above) attacks.

Results for low noise (σ = 1) are represented in

Fig. 5. We can see that the Hamming weight model

is clearly harder to attack, because the leakage of one

bit cannot be distinguished from that of the other bits.

Besides, we notice that the stochastic attack is per-

forming much worse than the optimal attack: about 10

times more traces are required for an equivalent success

probability in key extraction.

Results for high noise (σ = 4) are represented in

Fig. 6. Again, the “proportional” model is easier to at-

tack than the “identical” model (for each bit). Now,

we also see that the gap between the optimal ML at-

tack and the stochastic attack narrows: only about 5

times more traces are needed for the stochastic attack

to perform as well as the optimal attack in terms of suc-

cess probability. Besides, we notice that the AR noise

is favorable to the attacker. It is therefore important

in practice for the attacker to characterize precisely the

noise distribution (recall the methodology presented in

Sec. 4.1).

Clearly, these conclusions are in line with the tem-

plate versus stochastic (offline) study carried out in [?]:

for high noise, the (online) learning of the model re-

quires more traces, hence is more accurate. Therefore,

the performance of DML,sto gets closer to that of DML

than for high noise.

4.3 Attacks on Real-World Traces

We now compare CPA with DML and DML,sto on mea-

surements provided by the DPA contest V4. These traces

have have been acquired from an 8-bit processor, hence

have a signal-to-noise ratio greater than one, reaching 7

at some points in time. The interval for our case-study

is [170, 250] from Fig. 2, hence D = 80. Regarding ML,

two learning strategies have been implemented:

1. the model is learned from a disjoint set of 5k traces,

which is the operational scenario for a profiled at-

tack;

2. the model is learned from the traces being attacked

(denoted self in Fig. 7). This case does not repre-

sent a realistic attack, but is interesting in that it

highlights the best possible attacker.

The attack success rates are plotted in Fig. 7. One can

see that both variants of DML and DML,sto achieve bet-

ter with S = 9 than with S = 2. This is consistent with

the analysis carried out in Sec. 2.3. Actually, the CPA

has a very poor performance because the model is actu-

ally very far from a Hamming weight: as can be seen in

Fig. 2.3(a), some parameters αi (e.g., for i = 2 and 6)

are positive in region [180, 200] whereas others αj (e.g.,

for j = 1, 3, 4 and 5) are negative. The compensating

signs account why the Hamming weight model is in-

appropriate. The ML with model pre-characterization

on the traces under attack show that very strong at-

tacks are possible (using a few traces only). Interest-

ingly, when the model used by ML is characterized

on 5k traces distinct from the traces being attacked,

the performance is almost similar. Eventually, the on-

line stochastic attack derived in this paper (DML,sto)

performs better than CPA (the distinguisher being the

maximum value of the Pearson correlation over the D =

80 samples).
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α identical and Σ isotropic α identical and Σ auto-regressive

α proportional and Σ isotropic α proportional and Σ auto-regressive

Fig. 5 Simulations for D = 3, S = 5, n = 4, σ = 1 (AR noise with ρ = 0.5).

α identical and Σ isotropic α identical and Σ auto-regressive

α proportional and Σ isotropic α proportional and Σ auto-regressive

Fig. 6 Simulations for D = 3, S = 5, n = 4, σ = 4 (AR noise with ρ = 0.5).
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Fig. 7 Comparison of success rate of CPA, DML,sto for S ∈
{9, 2}, and DML for S ∈ {9, 2} (with two distinct learning
methods)

5 Conclusions and Perspectives

Distinguishing a key from both multivariate leakage

samples and multiple models can be done in one step as

shown in this paper. A compact expression of the distin-

guisher is provided, using matrix operations. The strat-

egy is applied to real-world traces in profiled and non-

profiled scenarios. The resulting attack is more efficient

than the traditional approach “dimensionality reduc-

tion then stochastic (linear regression) attack)”. The

new multivariate distinguisher outperforms the other

state-of-the-art attacks. The presented methodology al-

lows for leakage agnostic attacks on vectorial leakage

measurements and complex models. In addition, the

matrix-based expression of the distinguisher benefits

from matrix-oriented software that implements compu-

tational optimizations for large dimensions.

A companion future work would consist in determin-

ing the optimal model dimensionality and basis from

any acquisition campaign. Another perspective is to

adapt the methodology to masked implementations, as

already done for monovariate leakage in [?], yet for this

case the distinguishers will certainly not exhibit sim-

ple closed-form expressions. However, we believe that

the approach could be fruitful in practice backed with

suitable optimization software.
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