
Complete Reverse-Engineering of AES-like Block
Ciphers by SCARE and FIRE Attacks

Christophe Clavier, Quentin Isorez,
Damien Marion, and Antoine Wurcker

XLIM-CNRS, Université de Limoges, Limoges, France
christophe.clavier@unilim.fr
quentin.isorez@etu.unilim.fr

damien.marion@unilim.fr
antoine.wurcker@xlim.fr

Abstract. Despite Kerckhoffs’s principle, proprietary or otherwise secret cryp-
tographic algorithms are still used in real life. For security and efficiency rea-
sons a common design practice simply modifies some parameters of widely used
and well studied encryption standards. In this paper, we investigate the feasibil-
ity of reverse engineering the secret specifications of an AES-like block cipher
by a FIRE attack based on Ineffective Fault Analysis (IFA) or by SCARE tech-
niques based on two models of collision power analysis. In the considered fault
or observational models, we demonstrate that an adversary who does not know
the secret key can recover the full set of secret parameters of an AES-like soft-
ware implementation and, in some models, even if it is protected by common
Boolean masking and shuffling of independent operations. We thereby intend to
demonstrate that protecting the implementation of such AES-like function is not
an option even if its specifications are not public.

Keywords: embedded devices, reverse engineering, AES, side-channel analysis,
SCARE, fault attack, FIRE

1 Introduction

Despite Kerckhoffs’s principle, the security is sometimes expected through obscurity,
and proprietary or otherwise secret cryptographic algorithms are still used in civil ap-
plications such as GSM or Pay-TV systems and for diplomatic or military usages. For
sake of simplicity a strategy for designing a secret encryption function may consist in
only modifying some parameters of a well studied and widely used public function.
Doing this, the design and development costs are reduced, and provided that the secret
parameters are carefully chosen the designer can expect inheriting the strength of the
public function structure like the Substitution Permutation Network in the exemplary
case of AES. In this paper we focus on the problem of recovering – by means of phys-
ical attacks – the parameters of a secret AES-like block cipher defined as a modified
AES where some or all of its parameters are replaced with secret non-standard values.
We present three contributions – different attacks under different models – which intent
to show that a broad range of methods may be used to that end. We give here short
introductions to fault analysis and side-channel analysis to introduce our three different
contributions.

Fault Analysis Fault analysis on embedded systems like smartcards has first been in-
troduced in late 1996 [1, 5] to threaten the two most famous cryptographic algorithms
that were in use at that time: DES and RSA. Since then many other contributions have
been published that also describe how to recover secret cryptographic keys by inducing
faults that produce erroneous results on a variety of public cryptographic algorithms.
Interestingly – and contrarily to the emblematic Differential Fault Analysis (DFA) that
derives information about the key from differences between a genuine and a faulted
outputs – some variants of fault analysis can exploit situations where a fault attempt re-
sulted in no modification of the normal output. This is the case of Safe Errors Analysis
(SEA) [33, 16] that considers faults whose effect on intermediate data has no influence
on the outcome of the execution, as well as Ineffective Fault Analysis (IFA) where faults
having no effect at all are yet informative [7, 10].

A first contribution of this paper, already published in [9], applies the ineffective
fault analysis concept to devise a FIRE1 attack on a secret AES-like block cipher. There
is little literature about reverse engineering by means of fault analysis and, as far as we
know, this is the first published FIRE attack that applies on such AES-like function.
Under the byte stuck-at-0 fault model, our attack exploits the effective or ineffective
nature of faults injected when reading an S-Box value from memory. We show that an
unprotected implementation of an AES-like block cipher is vulnerable to our FIRE at-
tack that can recover the full set of secret parameters. Beside providing new techniques
for recovering AES parameters by means of IFA, our attack demonstrates the necessity
to protect the implementation of a block cipher against fault attacks even though its
specifications are not public.

Side Channel Analysis Side Channel Analysis (SCA) has been introduced by Kocher et
al. [18, 19] as an efficient means to recover the secret key of cryptographic algorithms
on embedded devices. Since then many new attack techniques have been discovered
and new efficient countermeasures against these attacks have been proposed. Most of
this research activity concerned the classical context of key recovery where the target
encryption function is publicly known as in the emblematic cases of DES [23] and
AES [24] standards.

It is thus of interest to study to which extent SCA techniques – essentially through
power or electromagnetic measurements – can be used to recover the structure details
and/or the parameter values of an encryption algorithm whose specifications are kept
secret. Novak [25] has first described a SCARE2 technique that reveals the content of
one of the two substitution tables used in an authentication and key agreement secret
GSM algorithm. His attack considers the observational model where the adversary is
able to decide whether two instances of precisely located intermediate data collide or
not – without identifying their values – based on the side-channel observation of their
execution trace(s). In the same model, Clavier [8] later improved this attack by reveal-
ing both S-Boxes without prior knowledge of the encryption key. In [13] Daudigny et al.
proposed a SCARE of the standard DES. They used DPA to infer so-called scheduling
information which reveals when particular bits are manipulated, from which the suppos-

1 FIRE: Fault Injection for Reverse Engineering.
2 SCARE: Side-Channel Analysis for Reverse Engineering.

edly unknown permutation functions are derived. Two other works extended the usage
of SCARE to whole classes of ciphers sharing the same structure: Real et al. [29] first
revealed the round function of any unknown hardware Feistel implementation while Ri-
vain et al. show in [30] how to exploit S-Boxes collisions to retrieve an equivalent rep-
resentation of any secret Substitution-Permutation Network based encryption function.
Other publications [14, 26] also deal with side-channel analysis to reveal information
about secret algorithms.

The two other contributions of this paper investigate the feasibility of reverse engi-
neering the secret specifications of an AES-like block cipher by means of two different
models of collision power analysis:

First we consider the collision of values model where the attacker is able to de-
tect whether the two couples (x,y = S(x)) and (x′,y′ = S(x′)) of input/output bytes of
two different S-Box computations (or readings) are identical or not. This study, already
published in [12], demonstrates that an adversary who does not know the secret key can
efficiently recover the full set of secret parameters of an AES-like software implemen-
tation even if it is protected by a common set of countermeasures. While our work has
much in common with [30] (same attacker model, same attacker goal) they still have
distinct contributions. On one hand Rivain et al. recover any SPN-based function while
our method only applies to AES with secret parameters. On the other hand they assume
an unprotected implementation while we describe a variant of our attack that deals with
some classical side-channel countermeasures.

It may be argued that distinguishing between collision and non-collision of (cou-
ples of) values by observing the side-channel leakage may be a quite challenging task
in practice. This is why we thought interesting to investigate a more relaxed observa-
tional model where the adversary only identifies collisions and non collisions of couples
of Hamming weights. As the power consumption is classically modelized as a linear
function of the Hamming weight of the manipulated data, we see the ability to detect
collisions of Hamming weights – (HW(x),HW(y)) = (HW(x′),HW(y′)) – as a weaker
and more reasonable attacker model. While these collisions are less informative than
collisions of value, we still devised a method – this is the novel contribution of this
paper – that exploits them to retrieve the secret parameters without knowing the key.
After presenting an attack in the unprotected implementation scenario, we explain how
to adapt it so that it still applies in the presence of one of the two countermeasures
considered in the collision of values model.

Organisation of the Paper The paper is organized as follow: Section 2 briefly describes
the AES and defines what we call an AES-like function which is the target of our at-
tacks. We present the considered attacker models in Section 3 and analyse how they are
related. In Section 4 we explain step by step how to recover the full set of parameters of
the AES-like by a FIRE method. In Section 5 we show how to achieve the same goal by
a SCARE attack under the collision of values model both on unprotected and protected
implementation. In Section 6 we present an original work that also devise a SCARE at-
tack though in the relaxed model of collision of Hamming weights. We discuss possible
countermeasures against our attacks in Section 7 and conclude the paper in Section 8.

2 AES-like Block Cipher

We give hereafter a brief description of the 128-bit version of AES, and define what we
mean in this paper by an AES-like block cipher. For more precise information about the
AES we refer the reader to the NIST standard [24] which includes its full specifications.

2.1 Description of the AES

In the process of AES computation, a byte is considered as an element of the finite field
GF(28), and each 16-byte internal state may be represented as a square 4× 4 matrix.
The mapping between the vector and matrix representations is done by numbering the
elements column by column as described on Figure 1.

v3

v2

v1

v0

v7

v6

v5

v4

v11

v10

v9

v8

v15

v14

v13

v12

v3v2v1v0 v7v6v5v4 v11v10v9v8 v15v14v13v12 ⇔

Fig. 1. Mapping between vector and matrix representations in AES

Given a 128-bit plaintext M =(m0, . . . ,m15) and a 128-bit ciphering key K =(k0, . . . ,k15)
the AES computes a 128-bit ciphertext C = (c0, . . . ,c15), as depicted in Figure 2, by
first XOR-ing M with K and then updating the result state S0 through 10 rounds. For
r = 1, . . . ,9, each AES round number r computes its output state Sr by successively ap-
plying four transformations SubBytes, ShiftRows, MixColumns and AddRoundKey
to its input Sr−1. The ciphertext is finally defined as the output of a 10th and last round
which does not include the MixColumns operation. The encryption process is summa-
rized as follow:

S0 ← M⊕K0 (K0 = K)

Sr ← MixColumns(ShiftRows(SubBytes(Sr−1)))⊕Kr (r = 1, . . . ,9)
C ← ShiftRows(SubBytes(S9))⊕K10

The SubBytes transformation is a permutation over GF(28) defined by an S-Box
table S. The ShiftRows consists in rotating each row number i (i = 0, . . . ,3) by i bytes
to the left. The MixColumns computes each column of its output as the product of a
constant matrix by the corresponding input column. Finally the AddRoundKey com-
putes the XOR (addition in GF(28)) between the current state and the round key Kr.
The different round keys Kr involved in the encryption process are derived from K
through the key scheduling function depicted on Figure 3. The RotWord operation sim-
ply rotates each byte of a column by one position upward, SubWord applies the S-Box
to each byte of the column, and Rcon[r] is a round dependent constant word equal to
(ρr−1,0,0,0) with ρ = 2.

M

AddRoundKey(K0)

S0

Sr−1

SubBytes

ShiftRows

MixColumns

AddRoundKey(Kr)

Sr

S9

SubBytes

ShiftRows

AddRoundKey(K10)

C

r = 0 r = 1, . . . ,9 r = 10

Fig. 2. The AES encryption path

⊕ ⊕ ⊕ ⊕

Kr−1

RotWord

SubWord⊕
Rcon(r)

Kr

Fig. 3. The AES key schedule

2.2 Definition of an AES-like Block Cipher

From the definition of the 128-bit AES it is possible to derive a large class of encryption
functions which differ from the standard AES while preserving its essential structure
of a Substitution Permutation Network as well as the number and width of its internal
values.

We define an AES-like block cipher as any function which is derived from AES by
modifications of the following parameters:

1. the S-Box table S can be replaced by any other one that preserves the property that
the SubBytes function is a permutation over GF(28) elements,

2. in the ShiftRows transformation each row number i is rotated by σi bytes to the
left, where σi can be any value from 0 to 3 (note that σi = i for the standard AES),

3. the constant matrix which defines the MixColumns operation can be replaced by
different configuration depending if we consider the FIRE or the SCARE setting:

3.1. FIRE attack: any circulant matrix based on a 4-tuple (γ0, . . . ,γ3) of GF(28) \
{0},

3.2. SCARE attacks: any 16-tuple (α0, . . . ,α15) of GF(28),
4. the RotWord operation in the key schedule rotates the column by η bytes upward,

where η can be any value from 0 to 3 (note that η = 1 for the standard AES),
5. the round dependent constant word Rcon[r] involved in the key schedule for the

computation of Kr is defined as (ρr−1,0,0,0) where ρ can take any non-zero byte
value (note that ρ = 2 for the standard AES).

Figures 4 to 8 depict the possible degrees of freedom on the parameters of ShiftRows,
MixColumns, RotWord and Rcon respectively.

/ σ0

/ σ1

/ σ2

/ σ3
4
η

⊕ρr−1

Fig. 4. ShiftRows parameters Fig. 5. RotWord parameter Fig. 6. Rcon[r] parameter
γ0 γ1 γ2 γ3
γ3 γ0 γ1 γ2
γ2 γ3 γ0 γ1
γ1 γ2 γ3 γ0

α0 α4 α8 α12
α1 α5 α9 α13
α2 α6 α10 α14
α3 α7 α11 α15

Fig. 7. MixColumns matrix (FIRE) Fig. 8. MixColumns matrix (SCARE)

For sake of simplicity, in the following sections, we shall simply denote by AES the
secret AES-like function that the attacker aims at reverse-engineer, and we shall refer
to the standard AES function as standard AES.

2.3 Notations

We introduce the following further notations:

1. Global notations:
– Kr = (kr,0, . . . ,kr,15), the rth round key (for r = 0, . . . ,10)
– Xr = (xr,0, . . . ,xr,15), the SubBytes input of round r (for r = 1, . . . ,10)
– Yr = (yr,0, . . . ,yr,15), the SubBytes output of round r (for r = 1, . . . ,10)
– Zr = (zr,0, . . . ,zr,15), the MixColumns input of round r (for r = 1, . . . ,9)
– Tr = (tr,0, . . . , tr,15), the MixColumns output of round r (for r = 1, . . . ,9)

2. notations used in Sect. 4 (FIRE attack):
– λi = k0,i⊕S−1(0) (for i = 0, . . . ,15)
– mki, j the byte value verifying equation: γ j ∗S(mki, j⊕ k0,0) = k1,i⊕S−1(0)

(for i = 0, . . . ,15 and j = 0, . . . ,3)
– βi, j = γi/γ j (for i, j = 0, . . . ,3)

3. notations used in Sect. 5 and 6 (SCARE attacks):
– µr,i, j = kr,i⊕ kr, j (for r = 0, . . . ,10 and i, j = 0, . . . ,15)

3 Attacker Models

We consider the chosen plaintext scenario where the attacker owns a device (e.g. a
smartcard) embedding a software implementation of a secret AES-like encryption func-
tion. He can query the device with chosen plaintexts and receives the corresponding
ciphertexts. He is assumed to ignore the value of the key K and his goal is to reverse-
engineer all the secret parameters of the encryption function by analysing faults effects
for the FIRE attack, or the side-channel traces of each encryption for the SCARE at-
tacks.

It is obvious that the cryptographic strength of an AES-like block cipher defined
in Section 2.2 may range from very weak to reasonably strong functions. Even, prob-
ably a quite small fraction of them can be acceptable for a safe cryptographic usage.
Nevertheless, as a conservative option, we choose to consider a blind attacker who
does not disqualify a possible function regarding the relevance of its parameters, but
rather accepts a priori any set of parameters – (S,{σi}i,{γi}i,η ,ρ) for FIRE model and
(S,{σi}i,{αi}i,η ,ρ) for SCARE models – modifiable according to our definition.

3.1 FIRE Attack Model: Byte Stuck at Zero

For the FIRE attack described in Section 4 we assume a byte stuck at 0 fault model
when reading an S-Box output from memory. That means that when a fault is injected
during the reading of a targeted S-Box, the retrieved value is forced to zero whatever its
original value. In this model, the attacker can infer whether the original (non faulted)
value of the S-Box output is equal to zero or not by encrypting the same plaintext twice:
once without any fault and once with a fault attempt. As depicted on Figures 9 and 10,
the fault attempt has no local effect (case of an ineffective fault) if the original value
is already equal to zero, whereas it actually produces a modification of the read S-Box

output if its original value is different from zero. In the former case an IFA occurs which
is identified by the fact that both resulting ciphertexts are equal, while they are different
in the later case.

Notice that in the particular case of the dual-execution countermeasure the IFA can
be detected with only the faulted execution. Indeed this countermeasure executes the
cipher process twice and does not return any output in case of difference between the
two ciphertexts. So an effective fault on one branch will be detected and the card will
refuse to output a value whereas an ineffective one will let both branches unchanged
and the card will output the value. The fact that the device agrees to output something
or not is the binary information for the detection of an IFA.

E5

23

AF

75

77

13

98

1A

08

9C

34

EE

B6

59

44

Yr

...
⇓

C

45

E5

23

AF

75

77

13

98

1A

08

9C

34

EE

B6

59

44

Faulted Yr

...
⇓

C′

00

6=

AB

5F

31

45

4C

DE

C6

11

58

90

67

6F

78

58

34

Yr

...
⇓

C

00

AB

5F

31

45

4C

DE

C6

11

58

90

67

6F

78

58

34

Faulted Yr

...
⇓

C′

00

=

Fig. 9. Example of IFA no-occurrence Fig. 10. Example of IFA occurrence

3.2 SCARE Attack Models: S-Box Collision

For the first SCARE attacks detailed in Section 5 we make the observational assump-
tion that the attacker can identify S-Box collisions of values by side-channel analy-
sis. More precisely, given two power trace segments T and T ′ corresponding to two
table lookups y = S(x) and y′ = S(x′) in the AES computation3, the attacker can de-
cide whether (x,y) = (x′,y′) or not, based on a side-channel distinguisher. This side-
channel collision of values model has already been assumed in many key recovery at-
tacks [31, 32, 2, 3, 4, 11] as well as for reverse-engineering purpose [25, 8]. Notably
Bogdanov [4] used exactly the same model as ours applied on AES S-Boxes.

It may be argued that detecting collisions between two S-Boxes based on traces from
two different executions is more difficult than from a unique trace and may result in less
reliable decisions due to possible differences in the experimental conditions (tempera-
ture,. . .). As we think that this is a debatable question, we choose to present this attack
in both settings: the inter-traces scenario where the attacker can detect collisions from
different traces, and the intra-trace one where he can not.

For the SCARE attack presented in Section 6 we adopt the relaxed model of S-
Box collisions of Hamming weights. Instead of identify whether (x,y) = (x′,y′) the

3 The two S-Box lookups may be located at different rounds, and possibly on different traces
with different plaintexts.

attacker is merely required to decide whether (HW(x),HW(y)) = (HW(x′),HW(y′)).
The choice of this relaxed model is supported by the underlying physical behaviour of
an 8-bit micro-processor where the eight data bus lines contribute in a supposedly addi-
tive manner to the consumption. This obviously suggests the Hamming weight leakage
model which has proved to be relevant and efficient particularly for several Simple
Power Analysis [20, 21, 22] and for Correlation Power Analysis [6].

4 FIRE Attack using IFA

In this section we describe step by step how to recover the secret parameters of an AES
implementation that does not feature any side-channel countermeasure. The assumed
fault model introduced in Sect. 3.1 allows the attacker to detect by IFA if yr,i = S(xr,i) =
0 or not when he induces a fault on the computation or reading of S-Box i at round r.

We remind the reader that the method detailed below was already published in [12],
this version offers more effort of clarity.

Retrieving the coefficients of the MixColumns matrix involves the multiplicative
orders of the βi, j = γi/γ j elements. We make the assumption that at least one of them
has order 255 (which means that it generates GF(28)\{0}). We have counted that this
condition is verified for 95.28% of all 2554 possible quadruplets.

We now introduce some preliminary results used in the description of the attack.

Lemma 1. The knowledge of (λ0, . . . ,λ15) allows to select plaintext bytes mi and m j
such that x1,i = x1, j (for all i, j = 0, . . . ,15).

Proof. For any mi we have x1,i = mi⊕ k0,i. Selecting m j = mi⊕λi⊕λ j induces that:

x1, j = mi⊕λi⊕λ j⊕ k0, j

= mi⊕ k0,i⊕S−1(0) ⊕ k0, j⊕S−1(0) ⊕ k0, j

= mi⊕ k0,i

= x1,i

Corollary 1. The knowledge of (λ0, . . . ,λ15) and ShiftRows parameters allows the
attacker to retrieve any value mki, j.

Proof. By choosing mk = λk one can force to zero the output of the corresponding
S-Box. Knowing ShiftRows parameters, an attacker is thus able to build a plain-
text that induces three zero values at chosen positions in an arbitrary input column of
MixColumns. He then exhausts the value of the last byte of this column by modifying
the corresponding plaintext byte, and wait until an IFA occurs on a related chosen S-
Box of second round. For chosen i and j, where i is the index of the byte implied in the
IFA at line `= i mod 4 and column c = bi/4c, and where γ j is the active MixColumns
coefficient, the position of the active plaintext byte expresses as i′ = `′ + 4c′ where
`′ = (`+ j) mod 4 and c′ = (c+σ`′) mod 4, and we have:

y2,i = 0

x2,i = S−1(0)

γ j ∗S(mi′ ⊕ k0,i′)⊕ k1,i = S−1(0)

γ j ∗S(mi′ ⊕λ0⊕λ0⊕ k0,i′) = k1,i⊕S−1(0)

γ j ∗S ((mi′ ⊕λ0⊕λi′)⊕ k0,0) = k1,i⊕S−1(0)

from which the definition of mki, j induces that mki, j = mi′ ⊕λ0⊕λi′ .

Lemma 2. For i ∈ {0,4,1,5,2,6,3,7}, we have k1,i⊕ k1,i+8 = λi+4⊕λi+8.

Proof. {
k1,i+4 = k1,i⊕ k0,i+4
k1,i+8 = k1,i+4⊕ k0,i+8

}
⇓

k1,i⊕ k1,i+8 = k0,i+4⊕ k0,i+8 = λi+4⊕λi+8

4.1 Retrieving K0 up to a Constant Byte

In order to retrieve k0,i up to the constant value S−1(0) we fault the output of the ith

S-Box of the first round while exhausting mi. When an IFA occurs, we have y1,i = 0
from which we deduce that mi⊕ k0,i = S−1(0). This particular value of mi is equal to
λi = k0,i⊕S−1(0). Looping on the plaintext byte position i we can recover (λ0, . . . ,λ15)
which is K0 up to a XOR with S−1(0).

4.2 Retrieving ShiftRows Parameters

To retrieve the ShiftRows parameters we first manage to obtain a reference plaintext
that produces an IFA on the first S-Box of the second round. To that end we successively
encrypt plaintexts where bytes m0, m4, m8 and m12 are simultaneously exhausted. When
the IFA occurs we know that y2,0 = 0. This byte depends on four plaintext bytes, one
on each row of the state matrix, and positions of those bytes are directly related to the
ShiftRows parameters. We can identify the positions of these four bytes by noticing
that changing any of them modifies y2,0 and breaks the IFA, whereas changing any of
the 12 other ones lets y2,0 unmodified. By encrypting the reference plaintext with only
one byte modified each time we obtain the four positions that remove the IFA. Each one
of these positions reveals a ShiftRows parameter. Indeed, if changing mr+4c removes
the IFA on y2,0 it implies that this element, which belongs to row r, is shifted from
column c to column 0 by ShiftRows. We thus infer that σr = c.

4.3 Reducing MixColumns Entropy by Retrieving βi, j Orders

To obtain the multiplicative orders of the βi, j quotients we target successive IFAs on
the first S-Box of the second round. Without loss of generality, we first explain how to
learn the order of β1,2. Note that an IFA on y2,0 implies the following equation:

γ0 ∗ z1,0⊕ γ1 ∗ z1,1⊕ γ2 ∗ z1,2⊕ γ3 ∗ z1,3⊕ k1,0 = S−1(0)

This equation can be simplified by fixing m4σ0 to the value mk0,0 ⊕ (λ0 ⊕ λ4σ0)
where mk0,0 is determined according to Corollary 1. This implies that γ0 ∗ z1,0 = k1,0⊕
S−1(0) and the IFA equation thus reduces to:

γ1 ∗ z1,1⊕ γ2 ∗ z1,2⊕ γ3 ∗ z1,3 = 0

As a second trick, we also force z1,3 = 0 by fixing m3+4σ3 to λ3+4σ3 . The IFA equa-
tion becomes:

γ1 ∗ z1,1⊕ γ2 ∗ z1,2 = 0

At this point we enter an iterative process. At each step k> 0 the unknown value of
z1,1 is fixed and denoted by τ(k) while we exhaust the unknown value of z1,2 (actually by
exhausting m2+4σ2) until an IFA occurs. This z1,2 value will replace z1,1 at step (k+1)
so we can denote it τ(k+1). The IFA equation at step k implies:

γ2 ∗ τ
(k+1) = γ1 ∗ τ

(k)

⇒ τ
(k+1) = β1,2 ∗ τ

(k)

so that exploiting all equations from step 0 to step k gives:

τ
(k+1) = β

k+1
1,2 ∗ τ

(0)

To generate such unknown sequence τ we make use of an intermediate sequence
θ of known values as described on Figure 11. At each step k, the value θ (k) is defined
such that z1,1 = τ(k) = S(θ (k)⊕ k0,0) – and so such that z1,2 = τ(k+1) = S(θ (k+1)⊕ k0,0)
– in the following way:

– at step k = 0, the plaintext byte m1+4σ1 takes an arbitrary value and we have θ (0) =
m1+4σ1 ⊕ (λ0⊕λ1+4σ1),

– at step k > 0 the value of θ (k) is defined as θ (k) = m2+4σ2 ⊕ (λ0⊕λ2+4σ2) where
m2+4σ2 is the value that produced the IFA at step (k−1). The value of the plaintext
byte ensuring that z1,1 = S(θ (k)⊕ k0,0) at step k is given by m1+4σ1 = θ (k)⊕ (λ0⊕
λ1+4σ1).

At some step k = n−1 we eventually observe that θ (n) = θ (0) which implies:

τ
(n) = β

n
1,2 ∗ τ

(0) = τ
(0)

from which we derive that the multiplicative order of β1,2 is equal to n.
We can now change the roles of the indices to generate the sequences θi, j and τi, j

related to the other βi, j (for 06 i < j 6 3). Observe that it is always possible – and we

0

θ (0)

θ (1)

1

θ (1)

θ (2)

2

θ (2)

θ (3)

3

θ (3)

θ (4)

. . .

. . .

. . .

n−1

θ (n−1)

θ (n) = θ (0)

Step

Fixed byte

Exhausted byte

Fig. 11. Building the θ sequence based on a βi, j of order n

assume that the attacker proceeds this way – to choose adequately the plaintext bytes of
the first step so that the six sequences θi, j share the same initial value θ

(0)
i, j .

Having retrieved the orders of the six βi, j, we can use them as constraints to reduce
the number of possible quadruplets (γ0,γ1,γ2,γ3).

Once we observe that the order of some βi?, j? is equal to 255, we can use the two
corresponding sequences θi?, j? and τi?, j? as reference sequences which contain all non-
zero values. From now on we will denote by θ and τ these reference sequences of length
255, and by β = βi?, j? the quotient that generates them. Remind that these sequences
verify the two following properties:

τ
(k) = S(θ (k)⊕ k0,0)

τ
(k) = β

k ∗ τ
(0)

Remark 1. Retrieving the order of some βi, j is quite costly in terms of number of re-
quired faults. To obtain an IFA at step k we must exhaust from a set of (256−k) values,
so that this IFA requires an average of (256−k)/2 faults. Denoting ni, j the order of βi, j,
an average of Σ

ni, j−1
k=0 (256−k)/2≈ ni, j(256−ni, j/2))/2 faults are needed to determine

the sequence length. For example, about 214 faults are required if βi, j is of full order.
As an optimization we remark that once the reference sequences θ and τ have been

obtained, it is no more needed to generate the complete sequences for the other βi, j.
Indeed it suffices to obtain only the first IFA at step k = 0 which gives the value
θ
(1)
i, j . One then identify θ

(1)
i, j as θ (x) in the reference sequence and deduce that ni, j =

255/gcd(255,x). As an example if more than one of the six orders are equal to 255,
then only the determination of the first one costs 214 faults, while the others only cost
about 128 faults.

4.4 Reducing MixColumns Using Cross-Orders Relations

The orders ni, j of the βi, j all belong to the set {1,3,5,15,17,51,85,255} of divisors
of 255. Assume that for some pairs of indices (i1, j1) and (i2, j2) we have ni1, j1 | ni2, j2
and ni1, j1 > 1 4. Then, due to the fact that they share their first element, the sequence
θi1, j1 is fully included in the sequence θi2, j2 . We can thus identify the index t such that
θ
(1)
i1, j1

= θ
(t)
i2, j2

which implies that τ
(1)
i1, j1

= τ
(t)
i2, j2

and thus gives the relation βi1, j1 = β t
i2, j2 .

All such cross-orders relations are inferred without the need of any additional fault,
and can be used as constraints to further reduce the set of possible quadruplets {γ0,γ1,γ2,γ3}.

4 In the case that ni1, j1 = 1, we already learn that γi1 = γ j1 .

4.5 Reducing MixColumns by Using K1 Relations

We still focus our IFA on the first S-Box of the second round and use relations obtained
in Lemma 2 (k1,i⊕ k1,i+8 = λi+4⊕λi+8) to determine new constraints on MixColumns
parameters. First we determine mki,1 and mki+8,2 as described in Corollary 1 in order
to be able to choose plaintext bytes inducing γ1 ∗ z1,1 = k1,i⊕ S−1(0) and γ2 ∗ z1,2 =
k1,i+8⊕S−1(0). We also use knowledge of mk0,0 already found to remove k1,0 from the
IFA equation. Then we exhaust the plaintext byte m3+4σ3 linked to z1,3 until an IFA
occurs. We can recognize m3+4σ3 ⊕ (λ0⊕λ3+4σ3) as being some θ (p), so we learn the
index p such that z1,3 = τ(p), from which we successively derive:

y2,i = 0

γ0 ∗ z1,0⊕ γ1 ∗ z1,1⊕ γ2 ∗ z1,2⊕ γ3 ∗ z1,3⊕ k1,0 = S−1(0)

k1,0⊕S−1(0) ⊕ k1,i⊕S−1(0) ⊕ k1,i+8⊕S−1(0) ⊕ γ3 ∗ τ
(p)⊕ k1,0 = S−1(0)

k1,i⊕ k1,i+8⊕ γ3 ∗β
p ∗ τ

(0) = 0

λi+4⊕λ1,i+8

γ3 ∗β p = τ
(0)

The unknown elements in the last equation are τ(0) and the MixColumns parameters
γ3 and β . Two independent equations of this type can be combined to remove τ(0) and
create an equation involving only MixColumns parameters which can be used as an
additional constraint to further reduce the set of possible MixColumns quadruplets.

Lemma 3. At this point the informations acquired are sufficient to reduce the set of
candidates for {γ0,γ1,γ2,γ3} to 255 elements.

Proof. Exploiting two K1 relations from Lemma 2 gives us two equations that are:

τ
(0) =

λi+4⊕λi+8

γ3 ∗β p1

τ
(0) =

λi+8⊕λi+12

γ3 ∗β p2

⇒ β
p1−p2 =

λi+4⊕λi+8

λi+8⊕λi+12

⇒ (
γi?

γ j?
)p1−p2 =

λi+4⊕λi+8

λi+8⊕λi+12

⇒ γ
p1−p2
i? =

λi+4⊕λi+8

λi+8⊕λi+12
∗ γ

p1−p2
j?

As γi? and γ j? are the only unknown values a choice for one of these two values will
determine the second one. So it remains 255 valid pairs (γi? ,γ j?).

Previous step gave us cross-orders relations, in particular equations like:

β
n1
i?,l = β

n2
i?, j?

⇒
(

γi?

γl

)n1

=

(
γi?

γ j?

)n2

⇒ γ
n1
l = γ

n2
j? ∗ γ

n1−n2
i?

So for any valid pair (γi? ,γ j?) only one value for γl is valid, and we use the same
method to uniquely identify the last parameter. Finally we obtain a reduced set of 255
valid candidates for MixColumns parameters.

Remark 2. For any candidate quadruplet the equations obtained in this step can be used
to calculate the value of τ(0), and thus the whole sequence (τ(k))k=0,...,254.

4.6 Retrieving MixColumns and RotWord Parameters

This step allows to recover the MixColumns and RotWord parameters and mostly uses
previously acquired data. We use relations from the key schedule which involve the
RotWord parameter η and we combine them with already obtained equations linking
k1,i and mki, j (for i = 0, . . . ,3 and for any j). We are able to recognize mki, j as some
θ (q) value. We develop here the equations for i = 0, equations for others i can be found
by the same way: {

k1,0 = k0,0⊕S(k0,12+η)⊕ρ
0

k1,0 = γ j ∗S(mk0, j⊕ k0,0)⊕S−1(0)

⇒ S(k0,12+η) = k0,0⊕S−1(0)⊕1⊕ γ j ∗S(mk0, j⊕ k0,0)

= λ0⊕1⊕ γ j ∗S(θ (q1)⊕ k0,0)

= λ0⊕1⊕ γ j ∗ τ
(q1)

According to Remark 2, for any candidate for MixColumns parameters, the τ se-
quence is known so that the right part of the last equation can be computed and recog-
nized as a value τ(q2) which is directly linked to a known value θ (q2):

⇒ S(k0,12+η) = τ
(q2)

⇒ S(k0,12+η) = S(θ (q2)⊕ k0,0)

⇒ k0,12+η = θ
(q2)⊕ k0,0

⇒ θ
(q2) = λ0⊕λ12+η

The left part of last equation only depends on which of the 255 MixColumns can-
didates is assumed. The right part only depends on the RotWord parameter and can
take 4 values. We have four equations (for i = 0, . . . ,3) but in most cases only two are
sufficient. The use of one equation will let only 4 candidates for MixColumns, one per
value of η . Then the probability is high that the intersection with candidates given by a
second equation will let only one possible pair ((γ0,γ1,γ2,γ3),η).

4.7 Retrieving S−1(0)

We are now able to calculate k1,4:{
k1,0 = k0,0⊕ τ

(q2)⊕1
k1,4 = k1,0⊕ k0,4

⇒ k1,4 = k0,0⊕ τ
(q2)⊕1⊕ k0,4

= τ
(q2)⊕1⊕λ0⊕S−1(0) ⊕λ4⊕S−1(0)

= τ
(q2)⊕1⊕λ0⊕λ4

We then use k1,4 to derive S−1(0) from an equation obtained by Corollary 1:

k1,4 = γ j ∗S(mk4, j⊕ k0,0)⊕S−1(0)

⇒ S−1(0) = γ j ∗S(θ (q3)⊕ k0,0)⊕ k1,4

= γ j ∗ τ
(q3)⊕ k1,4

Once we have obtained S−1(0) we can deduce K0 from the λi values. Knowing k0,0

we infer the S-Box from all 255 equations τ(k) = S(θ (k)⊕ k0,0). At that point we can
compute the first round of the key schedule and derive K1.

4.8 Retrieving Rcon Parameter

Since we know K0, K1 and all AES parameters except ρ , we can control the value of T2.
We are so able to exhaust values of t2,0 to provoke an IFA at the output of the first S-
Box of the third round. The IFA equation y3,0 = 0 allows to recover k2,0 = t2,0⊕S−1(0).
Knowing k2,0 we can simply calculate ρ as:

k2,0 = k1,0⊕S(k1,12+η)⊕ρ
1

⇒ ρ = k1,0⊕S(k1,12+η)⊕ k2,0

4.9 Experimental Results

In order to estimate the number of faults necessary to fully recover the AES secret
specifications we have performed PC-based simulations. For each of the successive
steps we developed a program that simulates only that part of the attack so that we can
evaluate the individual cost of each step. All these programs have been executed on a
large number of simulation runs. Each run comprises the following features:

1. a secret AES-like block cipher is generated by drawing at random the set of its
parameters complying with properties stated as in Section 2.2, as well as the extra
property that at least one of the βi, j has order 255,

2. a secret key K is generated at random,
3. all parameters (or key knowledge) that are supposed to have been retrieved in pre-

vious steps are considered as known,

4. an oracle simulates a perfect IFA experiment: it takes as input all the AES param-
eters, the key, a plaintext and a fault position (expressed as a round and an S-Box
index) and returns a Boolean value which indicates whether the output of this S-
Box is zero (case of an IFA event) or not,

5. the attack step is performed by following the method described in the relevant sec-
tion, and the number of calls to the oracle is counted.

Table 1. Experimental results of the FIRE attack on an unprotected implementation

Step
Number
of faults

4.1 - Retrieving λi values 2056
4.2 - Retrieving ShiftRows 138
4.3 - Retrieving βi, j orders 22340
4.4 - Retrieving cross-orders relations 0
4.5 - Retrieving K1 relations 916
4.6 - Retrieving MixColumns and RotWord 64
4.7 - Retrieving S−1(0) 0
4.8 - Retrieving Rcon 128
Total 25 642

Table 1 gives the number of faults (IFA attempts) required by each step averaged
over 106 runs. For sake of clarity we also mention the few steps that do not necessi-
tate any fault while we have obviously not simulated them. As one can see the most
costly step is the determination of the βi, j orders which requires about 22300 faults
even though we have implemented the optimization trick described in Remark 1. The
other steps are much less costly so that about 25600 faults on average are needed for
recovering the complete specifications of a secret AES-like block cipher. While this fig-
ure may appear as a large number of faults, we emphasize that the entropy of recovered
secret information in the case of a FIRE attack is usually much important compared to a
classical key recovery. In the considered AES-like case, the total entropy to be retrieved
amounts to about 1734 bits5 of information in addition to the 128 key bits.

4.10 Particular Cases

In this section we study two possible extended definitions of an AES-like cipher and
describe how to adapt the FIRE attack presented above to these different cases. The
first variant relaxes the choice of MixColumns parameters by allowing any invertible
matrix of 16 coefficients instead of only circulant matrix. The entropy of the matrix is
thus increased from about 32 to about 128 bits. The second variant relaxes the property

5 Taking account all secret components: S-Box(log2(256!)' 1684 bits), ShiftRows (4 x 2 bits),
MixColumns (4 x 8 bits), RotWord (2 bits), Rcon (8 bits).

that all Rcon[r] are defined as ρr−1 which depend on the sole ρ byte value. Rather we
allow independent ρ ′r bytes at each round r = 1, . . . ,10. This increases from 8 to 80 bits
the entropy of the Rcon parameter.

Full Entropy MixColumns Matrix The MixColumns matrix is not necessarily circu-
lant and have 16 "independent" coefficients instead of only 4. The new MixColumns
matrix is represented in Figure 12 where one can notice the new column-wise number-
ing of the coefficients.

γ0 γ4 γ8 γ12
γ1 γ5 γ9 γ13
γ2 γ6 γ10 γ14
γ3 γ7 γ11 γ15

Fig. 12. Extended MixColumns matrix

Steps 4.1 and 4.2 are not impacted by this new setting and allow to retrieve λi
values and ShiftRows parameters as previously described. Corollary 1 does not allow
to obtain any value mki, j any more but only for pairs of indices such that i≡ j (mod 4).

Corollary 2. The knowledge of (λ0, . . . ,λ15) and ShiftRows parameters allows the
attacker to retrieve any value mki, j where i≡ j (mod 4).

Proof. Let r and c denote respectively the row and the column of an element i. An IFA
on value y2,i gives an equation involving the coefficients γ0+r, γ4+r,γ8+r and γ12+r on a
same row r:

γ0+r ∗ z1,4c⊕ γ4+r ∗ z1,4c+1⊕ γ8+r ∗ z1,4c+2⊕ γ12+r ∗ z1,4c+3⊕ k1,i = S−1(0)

As in Corollary 1, the attacker is able to force to zero three bytes of the considered
input column, and exhaust the last one until an IFA occurs. Each position 4c+ k (for
k = 0, . . . ,3) of the active byte induces one of the following equations:

γ0+r ∗ z1,4c = k1,i⊕S−1(0)

γ4+r ∗ z1,4c+1 = k1,i⊕S−1(0)

γ8+r ∗ z1,4c+2 = k1,i⊕S−1(0)

γ12+r ∗ z1,4c+3 = k1,i⊕S−1(0)

As one can see, mki, j values can be obtained only for j = 4k+ r that is j ≡ i (mod 4).

Due to Corollary 2, Step 4.3 has to be applied separately on each row r, allowing
to recover six βi, j orders per row with (i, j) ∈ {0+ r,4+ r,8+ r,12+ r}. We want to
highlight that once the first βi, j order equal to 255 is discovered, the following orders
(even from other rows) can be identified quickly according to optimization described

in Remark 1. As a consequence, the total cost of this step should not be significantly
larger than for a circulant MixColumns matrix.

Step 4.4 derives cross-orders relations between two βi, j whenever the order of βi1, j1
divides that of βi2, j2 . Interestingly we notice that we can still derive such relations
whether the two βi, j are issued from a same row or not. Indeed, due to Lemma 1 which
allows to place a same value at output of any two arbitrary S-Boxes, we are able to start
every sequence by a same θ (0). Since all sequences are based on the same initial value
we can identify the index t such that θ

(1)
i1, j1

= θ
(t)
i2, j2

, revealing the cross-orders relation.
In Section 4.5, we used two equations – out of the eight ones provided by Lemma 2

– to reduce to 255 the number of candidates for MixColumns parameters. The same
method can be applied in the extended matrix case since we still have two equations
available per each row. We thus use all eight equations – two equations per row – to
reduce to 255 values each set of candidate for a row of MixColumns.

The method described in Section 4.6 have to be adapted and does not allow to
fully retrieve MixColumns and RotWord parameters but creates a one-to-one relation
between them. In our standard attack we use one of the four equations available that
look like: {

k1,0 = k0,0⊕S(k0,12+η)⊕ρ
0

k1,0 = γ j ∗S(mk0, j⊕ k0,0)⊕S−1(0)

to reduce the number of MixColumns candidates to only four, exactly one per η can-
didate. This information is then combined with a second equation (e.g. one using k1,1
and mk1, j) to determine the correct couple of MixColumns and RotWord parameters.
In the extended mode each equation involving k1,i is necessarily related to the row i of
the MixColumns matrix. Thus we can exploit only one equation per row and reduce the
MixColumns candidate set of each row to 4 elements, related to η candidates. We finally
obtain a reduced set of only one MixColumns matrix for each RotWord candidate.

To end the attack notice that we have 22 candidates for the combination of MixColumns
and RotWord parameters, 28 candidates for S−1(0) and 28 candidates for the Rcon
parameter ρ . Each of the 218 candidates on those elements allows to recover the S-
Box table and then compute the entire key schedule. Indeed for each candidate the se-
quence τ is known since we know the MixColumns matrix, and k0,0 is also known since
we know S−1(0). We can therefore recover the S-Box by exploiting all 255 relations
τ(k) = S(θ (k)⊕ k0,0).

We are able to apply the method of Section 4.1 to the S-Boxes of last round and
retrieve any arbitrary byte of K10. For example when an IFA occurs on the ith S-Box
of last round we learn that y10,i = 0 which implies that k10,i′ = c10,i′ where i′ = (i−
4σi mod 4) mod 16. We can then compute the key schedule under the 218 candidates and
determine the correct one by checking the predicted K10 against some of its actual bytes.

Remark 3. Compared to the circulant case, the fraction of matrices for which there
exists at least one order of βi, j equals to 255 is increased from 95.28% to 99.99% due
to the fact that it may appear on any row.

Extended Rcon Parameter Instead of defining Rcon[r] = ρr−1 parameters as being
all dependent on the same byte ρ , we study in this section the case where they are all

independent. We denote them as ρ ′r (for r = 1, . . . ,10) and the equation that defines the
first byte kr,0 of each round key becomes:

kr,0 = kr−1,0⊕S(kr−1,12+η)⊕ρ
′
r

The Rcon parameters are only implied in equations at Steps 4.6, 4.7 and 4.8.
At Step 4.6 we retrieve MixColumns and RotWord parameters using two equations

chosen amongst the four following available ones:

k1,0 = k0,0⊕S(k0,12+η)⊕ρ
′
1

k1,1 = k0,1⊕S(k0,12+(1+η)mod 4)

k1,2 = k0,2⊕S(k0,12+(2+η)mod 4)

k1,3 = k0,3⊕S(k0,12+(3+η)mod 4)

As only one of them uses a Rcon parameter we can avoid it and apply this step
without other modification.

At Step 4.7 we retrieve S−1(0) by calculating one of the four values k1,4, k1,5, k1,6
and k1,7. We took k1,4 as example which is related to Rcon parameter by its relation to
k1,0: {

k1,4 = k1,0⊕ k0,4

k1,0 = k0,0⊕S(k0,12+η)⊕ρ
′
1

As in the previous step we can avoid the difficulty by computing one of the three other
values that are not linked to ρ ′1.

The last step detailed in Section 4.8 aims at recovering the only remaining unknown
parameter ρ . At this step we argued that the control over state T2 allows to calculate
Rcon at round 2. This reasoning is applicable at any round because it only depends on
the structure of the key schedule which is identical at each round.

With the extended Rcon, the only unknown AES parameters are the ten ρ ′r values.
At first we have control over state T1 that allows us to discover ρ ′1. Then we learn the
value of K1 which gives us the control over T2 and we thus iteratively recover every
values ρ ′r in the same way.

The extra-cost of extending the definition of Rcon parameter only resides in the
fact that the method described in Section 4.8 have to be done for each round. The
theoretical average cost of this step thus amounts 1275 faults instead of 127.5. This is a
small increase compared to the total cost.

5 SCARE Attack in the Value Collisions Model

In this section we describe SCARE attacks performed in the value collisions model. We
remind that in this model the attacker is able to detect when two S-Box access y = S(x)
and y′ = S(x′) verify x = x′ and y = y′. We remind also that inter-traces setting means
that the attacker is able to detect collisions between two S-Box in a same or in two
different executions, and that intra-trace setting means that the attacker is able to detect
collisions between two S-Box only in a same execution.

Section 5.1 describes an attack in this model when no countermeasure is imple-
mented while Section 5.2 describes an attack in the presence of some classical coun-
termeasures. In Section 5.3 we detail how to adapt the attack of Sect. 5.1 to a higher
entropy Rcon parameter. Finally, provided that the attacker knows a priori the relative
values of the key bytes, we extend in Sect. 5.4 the attack of Sect. 5.2 to a higher order
masking (128-bit) protected implementation.

We remind the reader that the method detailed below was already published in [9],
this version offers more effort of clarity.

5.1 SCARE Attack in the Value Collisions Model Without Countermeasures

In this section we describe how to recover the secret parameters of an AES implemen-
tation that does not feature any side-channel countermeasure. We proceed step by step,
and the order of these steps has importance as each of them depends on the information
retrieved in previous ones.

When this is relevant, we propose methods for both inter-traces and intra-trace set-
tings.

Retrieving ShiftRows Parameters In the inter-traces setting we can easily recover
the σi parameters. We first acquire a trace for a random plaintext, then we compare
this trace with the four ones corresponding to a modification of a single plaintext byte
mi (i = 0, . . . ,3). For each line i, observing which quadruplet of consecutive second
round S-Boxes do not collide with the reference trace reveals the value of σi.

In the intra-trace scenario, things are a little more complex:

Lemma 4. Assume a collision occurring between S-Box i in the first round, and S-Box
j in the second round. There are two ways to destroy this collision by modification of a
single plaintext byte: (i) either the active plaintext byte is at position i or, (ii) the active
byte is any of the four bytes involved in the computation of x2, j.

Depending whether one of the four plaintext positions involved in the computation
of x2, j is equal to i itself or not, there are respectively 4 or 5 active bytes that destroy
the collision.

Definition 1. We denote by 4-Collision and 5-Collision collisions that can be
destroyed by 4 and 5 plaintext bytes respectively.

Lemma 5. The four bytes involved in the calculation of a same x2, j belong to different
lines of the state matrix and are aligned on a same column after ShiftRows operation.

To retrieve the ShiftRows parameters we first encrypt random plaintexts until a
single collision occurs between a first round S-Box at position i and a second round
S-Box at position j. Then for all k 6= i we encrypt a modified plaintext where only mk
has changed, and identify whether 3 or 4 positions destroy the collision.

The first case (cf. red and ∗ in Figure 13) corresponds to a 4-Collision and the
three identified positions together with i are involved in the computation of x2, j. The
second case (cf. blue and � in Figure 13) corresponds to a 5-Collision and the four

identified positions are related to x2, j. In both cases, these four positions are equal to
{4((c+σ`) mod 4)+ `}`=0,...,3 where c = b j/4c is the column of the collision. They
are all different modulo 4 so that it is easy to infer the σ` parameters from them.

∗ ∗ ∗ ∗� � �� �M :
...

x1,0 x1,1 x1,2 x1,3 x1,4 x1,5 x1,6 x1,7 x1,8 x1,9 x1,10 x1,11 x1,12 x1,13 x1,14 x1,15X1 :
...

x2,0 x2,1 x2,2 x2,3 x2,4 x2,5 x2,6 x2,7 x2,8 x2,9 x2,10 x2,11 x2,12 x2,13 x2,14 x2,15X2 :

Fig. 13. Collision between x1,5 and x2,2 revealing a 4-Collision(medium gray/red,∗). And col-
lision between x1,12 and x2,7 revealing a 5-Collision(dark gray/blue,�)

Retrieving K0 and K10 up to a XOR with a Constant Byte The first step consists
in detecting collisions between first round S-Boxes at two indices i and i′ (cf. light
gray/green boxes on Figure 14) on a same trace (or possibly on different ones in the
inter-traces setting). Each such collision implies equality of two S-Boxes inputs and
provides us with a linear relation between two key bytes:

x1,i = x1,i′ ⇔ (mi⊕ k0,i) = (mi′ ⊕ k0,i′)

⇔ k0,i⊕ k0,i′ = mi⊕mi′

Gathering several relations with random plaintexts eventually allows to relate all
key bytes together. We now know each differential µ0,i,i′ = k0,i⊕ k0,i′ and the key K0 is
thus retrieved up to a XOR with a constant byte. For example, it suffices to know the
value of k0,0 to compute other key bytes as k0,i = k0,0⊕µ0,0,i.

Since we already retrieved the ShiftRows parameters we know which last round
S-Box index any ciphertext byte is linked to. Similarly to the recovery of K0, encrypt-
ing random plaintexts and observing collisions in the last round S-Boxes (cf. medium
gray/red boxes on Figure 14) makes it possible to gather linear relations µ10,i,i′ =
k10,i⊕ k10,i′ = ci⊕ ci′ which eventually reveal K10 up to a XOR with a constant byte.
Note that the same set of traces can be used to recover both K0 and K10 up to a constant.

Retrieving the S-Box Table A collision between a first round S-Box at index i and
a last round S-Box at index j (cf. dark gray/blue boxes on Figure 14) implies that
x1,i = x10, j and y1,i = y10, j. Denoting x = x1,i and y = y10, j, the collision reveals an S-
Box relation S(x) = y for two values x= x′⊕k0,0 and y= y′⊕k10,0 where x′=mi⊕µ0,0,i
and y′ = c j′ ⊕µ10,0, j′

6 are known from the attacker.

6 Due to the ShiftRows the ciphertext byte related to the collision is located at index j′ =
`+4((c−σc) mod 4) where `= j mod 4 and c = b j/4c.

The S-Box table can thus be recovered by encrypting random plaintexts and observ-
ing such collisions (possibly on different traces) between first and last round S-Boxes.
Once all 256 S-Box relations

S(x′⊕ k0,0) = y′⊕ k10,0

have been identified for all couples (x′,y′) the table S is recovered up to two XOR
permutations on its inputs and outputs respectively.

When only collisions on the same trace are exploited, the relations are gathered like
in the coupon collector problem. In that case we can save a large amount of traces by
choosing the plaintexts so that all x′i = mi⊕µ0,0,i are different from each others and do
not belong to already known relations.

m0 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15M :
...

x1,0 x1,1 x1,2 x1,3 x1,4 x1,5 x1,6 x1,7 x1,8 x1,9 x1,10 x1,11 x1,12 x1,13 x1,14 x1,15X1 :
...
...

x10,0 x10,1 x10,2 x10,3 x10,4 x10,5 x10,6 x10,7 x10,8 x10,9 x10,10 x10,11 x10,12 x10,13 x10,14 x10,15X10 :
...

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15C :

µ0,0,5 =
m0⊕m5

µ10,12,15 =
c12⊕ c15

S(m12⊕ k0,12)
= c7⊕ k10,7

Fig. 14. Examples of collisions used in different attack steps in order to retrieve K0 (light
gray/green), K10 (medium gray/red) or the S-Box (dark gray/blue)

Retrieving K and all Key Schedule Parameters The next step is simply a 226 offline
exhaustive search that aims at recovering the absolute value of the key K as well as the
key schedule parameters which are the amount of rotation η of the RotWord operation
and the constant byte ρ that defines the Rcon vector.

For each candidate about k0,0 and k10,0 we know K0, K10 and the S-Box table. It is
then sufficient to make guesses also about the 22 values of η and the 28 values of ρ in
order to be able to compute the key schedule and derive all round keys. Each of these
226 candidates suggests a K10 value which is checked against the 128-bit known K10.
As this check on K10 is a 128-bit constraint, the probability of finding a false positive is
overwhelmingly low, which has been confirmed by our simulations.

Note that a natural extension of the definition of Rcon would be to define each
constant word as Rcon[r] = (ρr−1

0 ,ρr−1
1 ,ρr−1

2 ,ρr−1
3). Then the exhaustive search takes

250 computations which may be considered as unaffordable. We propose in Section 5.3
an adaptation of our attack that can deal with such 32-bit entropy Rcon as well as with
a full 320-bit entropy Rcon where all words are independent.

Retrieving the MixColumns Matrix At this point we have retrieved all secret param-
eters of the AES except the coefficients {αi}i=0,...,15 of the MixColumns matrix. We
are so able to know the input of the first round MixColumns for each already acquired
trace. As can be seen on Figure 15, each byte ui+4 j of the MixColumns output depends
on 4 same-row parameters {αi,αi+4,αi+8,αi+12}:

ui+4 j = αi ∗ v4 j⊕αi+4 ∗ v4 j+1⊕αi+8 ∗ v4 j+2⊕αi+12 ∗ v4 j+3

v3 u3 x2,3

v2 u2 x2,2

v1 u1 x2,1

v0 u0 x2,0

v7 u7 x2,7

v6 u6 x2,6

v5 u5 x2,5

v4 u4 x2,4

v11 u11 x2,11

v10 u10 x2,10

v9 u9 x2,9

v8 u8 x2,8

v15 u15 x2,15

v14 u14 x2,14

v13 u13 x2,13

v12 u12 x2,12

. . . ⇒
SR

⇒
MC

⇒
⊕K1

⇒
SB . . .

u8 = α0 ∗ v8⊕α4 ∗ v9⊕α8 ∗ v10⊕α12 ∗ v11

u7 = α3 ∗ v4⊕α7 ∗ v5⊕α11 ∗ v6⊕α15 ∗ v7
x2,` = u`⊕ k1,`

Fig. 15. Propagation of value v through MixColumns of first round

The goal is thus to obtain such equations by determining some input values x2,`
of the second round S-Boxes, from which u` is inferred as u` = x2,` ⊕ k1,` and the
MixColumns input is derived from the plaintext. Gathering 4 independent equations in-
volving the same set of parameters, and solving offline this system of equations, allows
to recover a row of 4 parameters of MixColumns matrix. Finding 4 equations for each
row allows to determine the whole matrix.

In both inter-traces and intra-trace settings no more traces are required for obtain-
ing these equations as we can exploit traces already acquired for the previous steps.
Amongst these traces we can find some x2,` values by noticing collisions occurring
between x2,` and either some byte of known X1 or some byte of known X10. Our simu-
lations demonstrate that the number of previously acquired traces always happens to be
far from sufficient to get enough independent equations.

Experimental Results In order to verify the soundness of our attack and estimate the
number of traces necessary to fully recover the AES secret specifications we have per-
formed PC-based simulations. For each of the successive steps we developed a program
that simulates only that part of the attack so that we can evaluate the individual cost of
each step. All these programs have been executed on a large number of simulation runs
that comprise the following features:

1. a secret AES-like block cipher is generated by drawing at random the set of its
parameters complying with properties stated as in Section 2.2,

2. a secret key K is generated at random,

3. all parameters (or key knowledge) that are supposed to have been retrieved in pre-
vious steps are considered as known,

4. an oracle simulates a perfect collision detection: it takes as input all the AES pa-
rameters, the key, a plaintext and two S-Box positions (possibly at different rounds
and/or on different traces) and returns a Boolean value which indicates whether the
input/output pairs of these two S-Boxes are equal or not,

5. the attack step is performed by following the method described in the relevant sec-
tion, and the number of traces used in the oracle queries is counted.

Table 2 presents the number of traces – averaged on 10000 runs – required by each
step in both intra-trace and inter-traces settings. For sake of clarity we also mention the
two last steps that do not necessitate any further trace.

Our attack on an unprotected implementation recovers the full set of secret AES pa-
rameters as well as the key within less than 400 traces on average by intra-trace analysis,
and less than 100 traces when collisions between different traces can be exploited.

Table 2. Experimental results on an unprotected implementation

Step
of traces # of

intra inter runs
Section 5.1 - Retrieving ShiftRows 11 5 10000
Section 5.1 - Reducing K0 and K10 entropies to 8 bits 70 8 10000
Section 5.1 - Retrieving the S-Box 288 81 10000
Section 5.1 - Retrieving K and the key schedule 0 0 –
Section 5.1 - Retrieving MixColumns 0 0 10000
Total 369 94

5.2 SCARE Attack in the Value Collisions Model With Countermeasures

In this section we consider a first-order side-channel protected implementation of the
AES. Precisely we assume an implementation that jointly features two countermea-
sures:

The first countermeasure makes use of an 8-bit Boolean masking all along the data
and the key schedule paths. Due to the considered attacker model, we are only con-
cerned by the effect of this countermeasure on the inputs and outputs of the SubBytes
operation. The masking of all other operations have no consequence on our attack.
SubBytes uses a randomized version S̃ of the S-Box table by means of two indepen-
dent 8-bit input and output Boolean masks rin and rout such that S̃(x⊕ rin) = S(x)⊕ rout
for all x. Due to memory and time constraints, typical embedded implementations of
this countermeasures refresh the S-Box randomization only at each execution. We thus
assume that the same randomized table is used for each input index and at each round of
a same execution7. The main negative effect of this countermeasure for the attacker is

7 A mask conversion is applied to masked intermediate values before or at the end of each round
to adapt from the rout of one round to the rin of the next one.

that he is no more able to detect and exploit S-Box collisions from two different traces.
Though, note that it is still possible to interpret collisions on S̃ on a same trace as re-
vealing collisions on the non-randomized S-Box. Thus, with this single countermeasure
only, the intra-trace version of the attack described in Section 5.3 perfectly applies.

We also assume a second countermeasure which shuffles the 16 computations of
ỹi = S̃(x̃i) at each round8. As a consequence, the observation of a collision between
two (or more) computations of S̃(x̃) (possibly at different rounds) gives no information
about the index of the x̃ = x⊕ rin input bytes. The attacker is thus limited to observe
the number of different S-Box inputs at each round, and how many occurrences of each
of them there are. To capture this limited attacker capacity, we introduce the following
definition:

Definition 2. Let’s define an n-structure (or more simply a structure) of type n(t1)1 n(t2)2 . . .n(ts)s
of elements of E the set of all n-tuples of elements of E (with n = Σk tknk) such that
t = Σk tk distinct elements appear in the tuple with n1,n2, . . . ,ns occurrences of each of
them respectively.

For example, any Xr made of all distinct S-Box input bytes belongs to a structure of
type 1(16) of elements of GF(28). As another example, the 16-tuple:

X1 = (13,47,173,47,86,119,13,47,119,223,205,119,37,88,200,5)

exhibits a 1(8)2(1)3(2) structure as 13 appears twice, and 47 and 119 appear three times
each.

Retrieving K0 up to a XOR with a Constant Byte The first step consists in executing
the AES with random plaintexts until finding one such that the first round SubBytes
presents a unique n-fold colliding value (a 1(16−n)n(1) structure). Only about a couple of
traces are needed on average to find such a reference trace. Then, for each i = 0, . . . ,15,
one modifies mi and observes whether the collision disappears (or its multiplicity n is
reduced). The set I of indices for which this happens verifies:

∀ i, i′ ∈ I, k0,i⊕ k0,i′ = mi⊕mi′

where mi and mi′ are the byte values from the reference plaintext.
By comparing the reference trace with at most 16 modified ones, one should result

with |I| = n in most cases. However, if n = 2, a non-detection may occur when the
change of an input byte involved in the initial collision makes it collide with another
not initially colliding one. In such rare case, it should be sufficient to change again the
different message bytes to reveal all which of them are involved in the initial collision.

Once a set of n colliding indices is identified, n different key bytes are linearly re-
lated together. Repeating this process to exploit different reference plaintexts exhibiting
1(16−n)n(1) structures, eventually allows to relate all key bytes to each others. K0 is then
retrieved up to a XOR with a constant byte (e.g. k0,0).

8 Here also the shuffling of other AES operations such as ShiftRows, MixColumns,
AddRoundKey, etc. have no influence on the attack proposed in the considered S-Box col-
lisions model.

Notice that two tricks allow to reduce the number of traces required to relate all
key bytes together. First, when a linear relation is known for all key bytes at indices
belonging to some subset J, one should choose the reference plaintext such that X1
bytes belonging to J are all different. The second trick is an early abort of the process
of determining the set I for a reference plaintext: as soon as a new relation is found that
involves a key byte from J, one can skip considering other indices from J .

Retrieving K10 up to a XOR with a Constant Byte If the attacker can query a de-
cipher oracle with chosen ciphertexts, it is possible to recover the value of K10 up to a
XOR with a constant by a similar method than that used to recover K0. One first en-
crypts random plaintexts until finding one such that the last round SubBytes presents
a 1(16−n)n(1) structure. Let C be the ciphertext. For modified ciphertexts C′, differing
from C by only one byte ci, one then encrypts M′ = AES−1

K (C′) and observes whether
the collision in the last round S-Boxes disappeared. By the same principle as for K0, it is
thus possible to identify relations like k10,i⊕ k10,i′ = ci⊕ ci′ . Accumulating sufficiently
many such relations eventually reveals K10 up to a XOR with a constant, with the same
complexity than for K0.

When the attacker does not have access to a decipher oracle, it is still possible to
recover K10. For random plaintexts, we exploit only traces which show no collision in
the last round S-Boxes (a 1(16) structure). In that case we know that for each index
pair (i, i′), µ10,i,i′ is not equal to ci⊕ ci′ . Starting from lists of all possible values for all
µ10,i,i′ , and accumulating such negative information, we end up with sufficiently many
lists containing only one remaining value so that K10 is finally recovered up to a XOR
with a constant byte (e.g. k10,0).

Note that we can do better by exploiting (possibly a posteriori) traces with collisions
as well. Whenever some µ10,i,i′ is known one can detect when a collision occurs between
S-Boxes related to bytes ci and ci′ . If it happens that this identified collision on X10 is
the only one on this trace, then one can infer negative information as above for all index
pairs (j, j′) not involved in the collision.

Retrieving the S-Box Table At this point, we know K0 and K10, each up to a XOR
with a constant. We now show how to recover the S-Box table for each candidate about
these two constants. We are seeking couples (x′ = x⊕ k0,0, y′ = y⊕ k10,0) verifying
S(x) = y as in Section 5.1. To that end we select wisely chosen plaintexts such that X1
contains five different byte values x(1), x(2), x(3), x(4) and x(6). As depicted on Figure 16
each value is repeated a different number of times, so that when a collision occurs the
colliding value can be identified based on the collision order.

x(1)

1

x(2) x(2)

2

x(3) x(3) x(3)

3

x(4) x(4) x(4) x(4)

4

x(6) x(6) x(6) x(6) x(6) x(6)

6

X1 :

Fig. 16. Example of state X1 having five values with different numbers of occurrences

If a collision occurs between one (or several) of the five input values x(i) and some
X10 byte then at least 240 values y′ are invalidated for pairing with x′ = x(i) ⊕ k0,0.
For any other non-colliding x(j), one can invalidate up to 16 values y′ for pairing with
x′ = x(j)⊕ k0,0. After each execution one should propagate the negative information as
much as possible. For example if it is known that x′ is necessarily paired with y′ then
one can invalidate all couples (x′,y′′) and (x′′,y′) with x′′ 6= x′ and y′′ 6= y′. This, in turn
can reveal another assured pair, and so on.

The same set of x(i) can be used multiple times if needed by just changing their
positions. Nevertheless, as a wise strategy for choosing the x(i) values, we suggest to
select values x′ = x(i)⊕ k0,0 with the least number of invalidated y′ values. The rational
behind this criterion is to maximize the expected gained information.

Retrieving K and all Key Schedule Parameters The same offline 226 exhaustive
search (not impacted by the countermeasures) as in Section 5.1 can be conducted to
retrieve K and the key schedule parameters.

Retrieving the MixColumns Matrix and the ShiftRows Parameters Knowing K
and the S-Box we are able to fully control vectors X1 and Y1. Let’s encrypt the plaintext
M0 defined by mi = k0,i⊕ S−1(0) for all i, so that Y1 = (0, . . . ,0). For that reference
plaintext the output of the MixColumns is also all zeroes and we have X2 = K1. By
analysing the trace of this execution (or simply because we know K1) we obtain the
number n0 of second round S-Box inputs which collide with the value S−1(0) of X1 in
the first round (cf. Figure 17).

Without loss of generality, assume that we want to recover the first column (α0,α1,α2,α3)
of the MixColumns matrix. Let’s modify only one message byte m4c and denote by v =
y1,4c the value of the active cell at S-Box output. The column number ((c−σ0) mod 4)
takes value (v,0,0,0) at input, and (α0v,α1v,α2v,α3v) at output of the MixColumns,
whereas all other columns remain unchanged. Assuming that the active quadruplet of
bytes of X2 does not contain the value S−1(0) in the reference execution9, by exhausting
v we can identify four values10 v0,v1,v2 and v3 which induce more than n0 occurrences
of S−1(0) in the second round S-Box inputs (cf. Figure 18). Since each of these values
has provoked an extra S−1(0) in X2, we know that for some unknown permutation π of
{0,1,2,3} the following holds:

∀ i = 0, . . . ,3 αi vπ(i)⊕ k1,i+4((c−σ0) mod 4) = S−1(0)

For each possible σ0 this system of equations suggests a set of 24 values (one per
candidate about π) for the targeted column of coefficients (α0,α1,α2,α3).

9 The opposite case should be rare and is easily detectable by observing a reduction of the
number of occurrences of S−1(0). In that case, simply modify c to change the column of the
active cell.

10 It may happen that less than four values are identified when one or two of them produce
multiple extra S−1(0) values. In such case, these special v values should be counted as many
times as their collision order.

At this point, we can change the value of c and repeat this process with the active cell
at the top of another column. For each possible σ0 we obtain a new set of 24 candidates
for the column of coefficients. By intersecting the two sets, with high probability, there
remains only one column value for the correct σ0 and none for the incorrect ones, which
therefore reveals (α0,α1,α2,α3) and σ0.

We can do better by having two active bytes on the same row. This allows the at-
tacker to gather the eight v values that produce extra collisions with only one stone. The
number of permutation candidates to exhaust becomes 8! (instead of 2× 4!) which is
still affordable.

By repeating this attack with the active cell located on the other rows, we can succes-
sively recover the three other columns of coefficients together with the corresponding
ShiftRows parameters.

In the rare cases where it remains an indecision about some column(s) of MixColumns
coefficients (and possibly ShiftRows parameters), it can be solved by checking the few
AES-like candidates against a known plaintext/ciphertext pair.

−1
S(0)

−1
S(0)

−1
S(0)

−1
S(0)

−1
S(0)

−1
S(0)

−1
S(0)

−1
S(0)

−1
S(0)

−1
S(0)

−1
S(0)

−1
S(0)

−1
S(0)

−1
S(0)

−1
S(0)

−1
S(0)X1 :

...
k1,0 k1,1 k1,2 k1,3 k1,4 k1,5 k1,6 k1,7 k1,8 k1,9 k1,10 k1,11 k1,12 k1,13 k1,14 k1,15X2 :

Fig. 17. Collision revealing that n0 = 1

−1
S(v)

−1
S(0)

−1
S(0)

−1
S(0)

−1
S(0)

−1
S(0)

−1
S(0)

−1
S(0)

−1
S(0)

−1
S(0)

−1
S(0)

−1
S(0)

−1
S(0)

−1
S(0)

−1
S(0)

−1
S(0)X1 :

...
t0 t1 t2 t3 k1,4 k1,5 k1,6 k1,7 k1,8 k1,9 k1,10 k1,11 k1,12 k1,13 k1,14 k1,15X2 :

Fig. 18. Presence of an extra collision (n = 2) gives exploitable information

Experimental Results We performed simulations of the different attack steps de-
scribed in this section in a similar way as for the unprotected implementation case
described in Section 5.1.

Table 3 presents the number of traces – averaged on 10000 runs – required by each
step of the attack. For sake of clarity we also mention the offline exhaustive search of
Section 5.2 that does not necessitate any further trace.

Overall, less than 4000 traces are required to fully recover to whole set of secret
AES parameters in the more realistic scenario of a classical first-order protected imple-
mentation and no prior information about the key.

We emphasize that the entropy of secret information in the case of a SCARE attack
is usually much important compared to a classical key recovery. In the considered AES-

like case, the total entropy to be retrieved amounts to about 1830 bits11 of information
in addition to the 128 key bits.

Table 3. Experimental results on a masked and shuffled implementation

Step # of traces # of runs
Section 5.2 - Reducing K0 entropy to 8 bits 246 10000
Section 5.2 - Reducing K10 entropy to 8 bits 1 408 10000
Section 5.2 - Retrieving the S-Box 1 263 10000
Section 5.2 - Retrieving K and the key schedule 0 –
Section 5.2 - Retrieving MC and SR 910 10000
Total 3 827

5.3 Extension of Rcon Parameter in Case of Unprotected Implementations

Our attack against unprotected implementations described in Section 5.1 assumes an
8-bit entropy Rcon vector made of 10 words Rcon[r] = (ρr−1,0,0,0). Two natural ex-
tensions would be to define a 32-bit entropy or a full 320-bit entropy Rcon vectors of
constant words respectively equal to (ρr−1

0 ,ρr−1
1 ,ρr−1

2 ,ρr−1
3) and (ρr,0,ρr,1,ρr,2,ρr,3)

for r = 1, . . . ,10. In the first case the exhaustive search of Section 5.1 necessitates 250

computations which is a quite intensive task, while it is completely infeasible in the
second case. In this section we present an adaptation of this attack step that exploits
new collisions to recover Rcon parameters in both extended cases. We only detail here
the 320-bit entropy case, the method can trivially be adapted to the 32-bit entropy case.

We remind that the Rcon parameters are not involved in first attack steps, this in-
duce that we are able to follow previous methods to recover K0 up to k0,0, K10 up to
k10,0, ShiftRows parameters and the S-Box table up to (k0,0,k10,0). On the contrary
the offline 226 exhaustive search of Section 5.1 now becomes a non-affordable 2338

exhaustive search.

Inter-Traces Version This new version of the attack step is split into three phases. The
first phase uses 28 traces to determine a list of 216 K1 candidates. The second phase
exploits key schedule constraints to find the correct K1 and ρ1,i parameters. Finally the
third phase allows to retrieve every other ρr,i parameters.

In the first phase we use the knowledge of µ0,i, j values to encrypt plaintexts such
that all 16 bytes of the first round S-Boxes are identical. As a consequence, one of these
28 encryptions verifies that Y1 contains only zeroes but we do not known which one
since we do not know k10,0. For this particular execution the output of MixColumns is
also an all zeroes state so that the input state X2 of the second round S-Boxes is equal
to K1.
11 Taking account of all secret components: S-Box(log2(256!) ' 1684 bits), ShiftRows (4 x 2

bits), MixColumns (16 x 8 bits), RotWord (2 bits), Rcon (8 bits).

As we are in inter-traces setting, for each one of the 28 traces we are able to identify
the value of X2 up to k0,0. This is done by finding a collision between each x2, j on
this trace and some x1,i on another one. We then have: x2, j = x1,i = mi⊕ k0,i = (mi⊕
µ0,0,i)⊕k0,0. To sum up we have identified 216 candidates for K1, one per candidate for
the couple (k0,0,k10,0).

The second offline phase uses the key schedule structure to obtain K1. For each
candidate about (k0,0,k10,0), each candidate for η and ρ1,0 allows to compute k1,0, k1,4,
k1,8 and k1,12. So for each (k0,0,k10,0) there are 210 candidates for those 4 bytes of K1
which can be checked against the corresponding K1 candidate found in first phase for
this (k0,0,k10,0) pair. With high probability there will be only one matching configu-
ration which reveals the correct values of k0,0, k10,0, η , ρ1,0 and K1. At this point, the
attacker knows K0, K10, the S-Box table, η , K1 and ρ1,0. Knowing K0, η , and K1, he can
easily calculate ρ1,1, ρ1,2 and ρ1,3 but also apply the method of Section 5.1 to recover
MixColumns parameters.

The third phase uses already acquired traces in order to find missing ρr,i parameters.
First, we aim to recover second round {ρ2,0,ρ2,1,ρ2,2,ρ2,3}. For that purpose we just
need to find K2. Indeed these ρ2,i parameters are involved in the derivation of K2 from
K1, so if K1 and K2 are known the attacker is able to calculate corresponding Rcon
parameters.

As K0, S-Box table, ShiftRows and MixColumns parameters and K1 are known, for
every available trace we are able to know the input T2 of the second round AddRoundKey.
As we are able to determine every x3,i by collisions, we easily infer K2 = T2⊕X3. Once
K2 is recovered we use the key schedule relations to obtain {ρ2,0,ρ2,1,ρ2,2,ρ2,3}.

Similarly, the knowledge of K2 allows to calculate T3 state, then identifying X4
by collisions reveals K3 from which {ρ3,0,ρ3,1,ρ3,2,ρ3,3} are derived, and so on for
every round. At the last round, no collisions are necessary to find K10 which is directly
computed as Z10⊕C.

Intra-Trace Version In the case where only intra-trace collisions are available, attacker
have to adapt the previous phases.

In the first phase, for each 28 encryptions described above, we obtain values of x2,i
by observing collisions with modified plaintexts. First we keep constant those specific
plaintext bytes so that x2,0 to x2,7 remain unchanged. By modifying other plaintext bytes
we give ourselves opportunities to observe collisions between a first round S-Box input
and every x2,i for i = 0, . . . ,7. Then we can change the roles of fixed and free plaintext
bytes to keep x2,8 to x2,15 constant and recover these eight remaining bytes of X2.

The second phase is performed offline so it can be done as in the inter-traces setting.
The third phase needs to find collisions between x3,i and a known value in order to

determine x3,i and infer k2,i. At this point X1, X2 and X10 are known so that there are
48 bytes that may collide with every x3,i. For any trace and any x3,i the probability that
a collision exists between x3,i and one of these bytes is p = 1− (1/256)48 ≈ 0.17. We
have sufficiently many available traces to recover every x3,i – not necessarily on the
same trace – from which we infer all bytes of K2. For successive next rounds things are
even easier since at each round we have 16 more known bytes (Xr) that may collide with
each xr+1,i. Remark that not all bytes of Kr are needed to recover the ρr,i parameters

since only one byte per line is actually sufficient. For example if we know k2,8 we
can successively compute k2,4 = k2,8⊕ k1,8, k2,0 = k2,4⊕ k1,4 and ρr,0 = k2,0⊕ k1,0⊕
S(k1,12+η).

5.4 Extention to Higher Order Masking

We consider a higher order masking scheme using 16 masked SubBytes tables, one per
S-Box in a round. We still combine it with the random order countermeasure. Note that
the attack on the high-order masking scheme that we propose in this section assumes
that the attacker already knows the relative values µ0,i, j of the key bytes.

With these countermeasures we can only detect collisions within a same trace and
between two S-Boxes at a same position in different rounds. These collisions are rarer
but give the extra information that they are vertically aligned. To identify that a collision
between two S-Boxes at two different rounds is actually vertically aligned, we need to
reject false positives by encrypting the same plaintext twice or more. Since all input and
output masks are independent, the probability that S-Box i at some given round collide
with S-Box i′ 6= i at some other given round is about 2−16 since both input values and
output values must collide. As there are 240 couples (i, i′) the probability of a false
positive between the S-Boxes of these two rounds is about 2−8. Thus, if the collision
still exists after multiple encryptions – two should be sufficient in most cases – the
probability is high that it is a true collision between aligned values masked with the
same input and output bytes. In the rest of the Section 5.4 when we say that a collision
occurs between two rounds, that means that it has been confirmed to be an aligned
collision.

Retrieving ShiftRows Parameters We encrypt random plaintexts until a collision
occurs between first and second rounds. We then encrypt the same plaintext with only
one byte modified each time and we check if the collision stays or disappears. We learn
whether it is a 4-Collision or a 5-Collision by counting the number of positions
that make the collision disappear.

In the case of a 4-Collision we learn that the four active bytes are on a same
column after ShiftRows operation but we do not known which column. We can thus
infer relative σi values – say its shape – up to an additive constant modulo 4.

Note that in the case of a 4-Collision we also have the extra information that at
least one of the σi is zero. This is because the collision is aligned and the byte position
that is involved in the collision also belongs to the column implied in the computation
of the second round colliding byte.

In the case of a 5-Collision we have three lines containing only one active ele-
ment from which we can infer the differences between the σi related to these lines. The
last line contains two active elements. One of them, which is implied in the computation
of the second round colliding byte, is aligned with the actives bytes of the three other
lines. The other is aligned with the second round colliding byte and does not belong
to the active column. We can not distinguish between these two cases but for each two
hypothesis on the position of the collision the active column is determined and we can
derive the absolute values of the σi parameters.

The procedure to precisely identify the ShiftRows parameters is to generate several
first/second round collisions until obtaining either two 5-Collisions or one 4-Collision
and one 5-Collision.

If we obtain two 5-Collisions we identify the correct solution by intersecting the
two pairs of solutions given by each collision.

If we obtain one 4-Collision and one 5-Collision we can use the shape infor-
mation given by the 4-Collision to decide between the two solutions given by the
5-Collision.

Note that in the case where all σi are zeroes only 4-Collisions can occur. This
particular case is easily identified from the first collision since all σi are the same
(knowledge of the shape) and one of them is zero, which implies that they are all zeroes.

Retrieving K10 up to a XOR with a Constant Byte We target first/last rounds colli-
sions but the shuffling countermeasure prevents us to determine the precise position of
the collision. We circumvent this problem by generating a first/second/last rounds triple
collision from an existing first/second rounds collision. To that end, once we obtain a
first/second rounds collision at a known position, we maintain it by fixing the 4 or 5
plaintext bytes that destroy it, and we change the other bytes at will until noticing a
triple collision with the last round also.

From a triple collision we infer that the first and last rounds S-Boxes have same
inputs and same outputs. We thus have S(mi⊕ k0,i) = c j⊕ k10, j where i is the known
position of the collision, j is deduced from i and the ShiftRows parameters, and only
k0,i and k10, j are unknown.

In order to recover K10 up to a constant byte we use two equations obtained by such
triple collisions. A first triple collision at position i gives us a couple (mi,c j) verifying
S(mi⊕ k0,i) = c j⊕ k10, j. A second one at an arbitrary position i′ 6= i provides an other
couple (mi′ ,c j′) verifying the same kind of equation.

The trick to obtain a suitable second triple collision is to give to m′i the value mi⊕
µ0,i,i′ (so that x′i = xi) and change bytes that are implied in the computation of x2,i′

until we get a first/second rounds collision. Then we keep this collision by fixing the
concerned plaintext bytes, and change the other free bytes until we obtain the expected
triple collision. As x′i = xi, we derive that c j⊕k10, j = c j′⊕k10, j′ which reveals µ10, j, j′ =
c j⊕ c j′ .

Retrieving S-Box Table up to Two Bytes In the previous attack step we showed how
to provoke triple collisions that give equations like S(mi⊕ k0,i) = c j⊕ k10, j. Each such
equation reveals a couple (x,y), where x = mi⊕ µ0,0,i and y = c j ⊕ µ10,0, j, verifying
S(x⊕k0,0)= y⊕k10,0. Accumulating 255 independent equations reveals the S-Box table
up to (k0,0,k10,0).

Retrieving K and all Key Schedule Parameters This part of the attack is performed
offline and can be done as described in Sect. 5.1. After this step the only remaining
unknown parameters are those of MixColumns matrix.

Retrieving MixColumns Coefficients In order to recover α values we use the traces
where triple collisions where identified in previous steps. We know the 4 or 5 first round
S-Box outputs involved in the collision and the value of the second round colliding byte.
Those values are related together by an equation in four unknown α values. Accumu-
lating four independent such equations allows to solve the system and recover a line of
four α parameters.

If necessary we can generate new triple collisions with selected positions in order
to recover remaining undetermined α values if any.

6 SCARE Attack in the Hamming Weight Collisions Model

We remind that in the Hamming weight collisions model the attacker is able to detect
when two S-Box calls y = S(x) and y′ = S(x′) simultaneously verify HW (x) = HW (x′)
and HW (y) = HW (y′). In this section we describe how to recover the secret parame-
ters of an AES implementation that does not feature any side-channel countermeasure.
We proceed step by step, and the order of these steps has importance as each of them
depends on the information retrieved in previous ones. At the end of this section we
consider how we can also deal with implementations featuring a first-order masking
countermeasure.

We remind the reader that the method detailed below is the novel contribution of
the paper. It stands in the intra-trace setting.

6.1 Definitions
Definition 3. For 06 a,b6 8, we define the sets Ψa,b and Ωa,b as follows:

Ψa,b = {x | HW(x) = a,HW(S(x)) = b}
Ωa,b = {y | HW(S−1(y)) = a,HW(y) = b}

Any two byte values belonging to the same Ψa,b (respectively the same Ωa,b) set are
inputs (respectively outputs) of two S-Box that will collide under the Hamming weight
collisions model defined in Section 3.2. One can remark that |Ψa,b| = |Ωa,b| since S is a
permutation. Figure 19 presents the repartitions of cardinals of Ψ sets for the standard
S-Box table and the number of occurrences of each of them.

In some steps of the following attack we use particular sets which verify |Ψa,b|= 1.
Due to uniqueness of value in the set, a collision implying two values from such a set
reveals that inputs and outputs of both implied S-Boxes are actually equal, instead of
only sharing the same Hamming weights. For instance there are 12 such sets in the case
of the standard AES.

Lemma 6. There are at least two Ψ sets such that |Ψa,b|= 1

Proof. As 0 (respectively 255) is the only element to have a Hamming weight equals to
0 (respectively 8) we have |Ψ0,HW(S(0))|= |Ω8,HW(S(255))|= 1

In some following steps we have to exhaust S-Box inputs in order to provoke a
collision, but in that configuration we are able to reduce the number of values to test.
We use the fact that all elements of a Ψ set will have the same behaviour in term of
collision/non-collision, then we have to encrypt only one value per Ψ set.

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

|Ψa,b|

a

b

0

0

1

1

1

1

8

8

2

2

28

28

3

3

56

56

4

4

70

70

5

5

56

56

6

6

28

28

7

7

8

8

8

8

1

1

∑
8
a=0 |Ψa,b|

∑
8
b=0 |Ψa,b|

0 0 0 0 1 0 0 0 0

0 0 2 0 1 3 2 0 0

0 2 3 8 5 4 4 2 0

1 1 4 17 16 10 5 2 0

0 3 9 11 21 16 9 1 0

0 1 7 10 19 14 3 2 0

0 0 3 7 5 8 4 0 1

0 1 0 2 2 1 1 1 0

0 0 0 1 0 0 0 0 0

|Ψa,b| # |Ψa,b| #

0 34

1 12

2 8

3 5

4 4

5 3

7 2

8 2

9 2

10 2

11 1

14 1

16 2

17 1

19 1

21 1

Fig. 19. |Ψa,b| repartition (at left) and occurrences (at right) for the standard AES S-Box

6.2 Considerations about Ψ and Ω sets

Before describing the attack we start by some considerations about Ψ and Ω sets and
explain how information is obtained about them, and how they are used during the
attack steps.

At some point we need to have identified Ψ sets. By this we mean that we have
partitioned the set of all 256 S-Box inputs into the sets Ψa,b that respectively contain
all inputs which collide together. Note that for each identified Ψa,b we know the input
Hamming weight a but possibly do not know the Hamming weight b of their images
through S.

Symmetrically we also need to have identified Ω sets with the meaning of a partition
of all S-Box outputs into the Ωa,b sets that respectively contain all outputs which collide
together. In this case we know the output Hamming weight b but possibly do not know
the Hamming weight a of their pre-images through S.

Note that there exists a one-to-one mapping between the set of all Ψa,b and the
set of all Ωa,b. We will also have to identify this mapping. For each Ψa,b (whose b
was unknown) we need to identify its Ωa,b companion set (whose a was unknown).
Obviously, since two related Ψ and Ω sets share the same a and b, once such a link is
identified these a and b parameters are then known. Notice that all y from an Ωa,b are
the images through S of all x from its Ψa,b companion, but we are possibly not able to
link individual values together yet.

Figure 20 depicts the three types of information that we exploit from every acquired
trace. Provided that we know K0, a first round collision allows to put together two S-Box
inputs in a same Ψa,b. For example in the case of the light gray/green collision we put
x1,0 and x1,5 in a same Ψa,b where a = HW(x1,0) and b is a priori unknown. Similarly,
with knowledge of K10 and the ShiftRows parameters, we can put y10,11 and y10,12 in

x1,0 x1,1 x1,2 x1,3 x1,4 x1,5 x1,6 x1,7 x1,8 x1,9 x1,10 x1,11 x1,12 x1,13 x1,14 x1,15X1 :
...

y1,0 y1,1 y1,2 y1,3 y1,4 y1,5 y1,6 y1,7 y1,8 y1,9 y1,10 y1,11 y1,12 y1,13 y1,14 y1,15Y1 :
...
...

x10,0 x10,1 x10,2 x10,3 x10,4 x10,5 x10,6 x10,7 x10,8 x10,9 x10,10 x10,11 x10,12 x10,13 x10,14 x10,15X10 :
...

y10,0 y10,1 y10,2 y10,3 y10,4 y10,5 y10,6 y10,7 y10,8 y10,9 y10,10 y10,11 y10,12 y10,13 y10,14 y10,15Y10 :

Fig. 20. Examples of collisions revealing Ψ (light gray/green), Ω (medium gray/red) or links
(dark gray/blue) information

a same Ωa,b – a unknown and b = HW(y10,11) – once we observe the medium grey/red
last round collision. If we know all K0, K10 and the ShiftRows parameters, then we
can induce from a first/last round collision, such as the dark grey/blue one, that the Ψ

set containing x1,12 is linked to the Ω set containing y10,3, even if we have not identified
all elements of these sets yet.

During the attack every collision/non-collisions of those three types are detected
and the related information is memorized. Indeed, any (i) first round non-collision, (ii)
last round non-collision or (iii) first/last round non-collision is informative. They re-
spectively inform that (i) the two x inputs do not belong to the same Ψ set, (ii) the two
y outputs do not belong to the same Ω set, (iii) the first round input x and the last round
output y respectively belong to Ψ and Ω sets that are not linked to each other.

These three types of information are useful during the attack. Indeed we can infer
from them that:

– if a particular value is in a set of cardinal 1, then any collision involving this element
is a collision of values and not only a collision of Hamming weights,

– if two sets Ψa,b and Ωa,b are known to be linked together, and if we identify an
S-Box input (respectively output) to be in Ψa,b (respectively Ωa,b), then the corre-
sponding S-Box output (respectively input) is known to belong to a reduced list of
candidates, namely the elements of Ωa,b (respectively Ψa,b).

The prerequisite to start building Ψ sets is the knowledge of K0 because we have to
know x1,i values involved in a first round collision. We can proceed even if we know K0
up to its opposite – uncertainty between K0 and K0 – because in this case we also know
the x1,i values up to their opposite. In that case we can choose an arbitrary candidate
for K0 and start to build Ψ sets under this assumption. If a later information eventually
reveals that we have chosen the wrong candidate we simply have to transform every
Ψa,b set already build to its actual opposite Ψ8−a,b which contains the opposites of each
of its elements. For sake of clarity we will not mention in the sequel this potential
permutation which does not perturb any of our attack steps.

Similarly, the prerequisites to start building Ω sets is the knowledge of K10 and of
the ShiftRows parameters, and those to start identifying links is the knowledge of all
K0, K10 and ShiftRows parameters. Notice that the same reasoning as above – related
to the uncertainty between a key and its opposite – also holds for the building of the Ω

sets (if we only know K10 up to its opposite) and for the linking of Ψ and Ω sets.

6.3 Retrieving K0 up to 216 Candidates

In the first step we aim to find every k0,i up to its opposite leading to 216 candidates for
K0.

Consider two different traces where a first round collision occurs on one trace at
positions i and j for plaintext bytes mi and m j, and another first round collision occurs
on the other trace, also at positions i and j, for plaintexts bytes m′i 6= mi and m′j = m j.
Then have x j = x′j from which we infer that HW(xi) = HW(x′i). Given mi and m′i we
can invalidate all candidates k0,i that do not verify HW(mi⊕ k0,i) = HW(m′i⊕ k0,i).

We accumulate several constraints for each key byte until we reduce to only two
opposite candidates for every k0,i. Indeed k0,i and k0,i are necessarily undistinguishable
as:

HW(mi⊕ k0,i) = HW(m′i⊕ k0,i) ⇔ 8−HW(mi⊕ k0,i) = 8−HW(m′i⊕ k0,i)

⇔ HW(mi⊕ k0,i⊕255) = HW(m′i⊕ k0,i⊕255)
⇔ HW(mi⊕ k0,i) = HW(m′i⊕ k0,i)

In order to provoke those types of collisions we fix one half of the plaintext to
arbitrary values while the second half is randomly chosen. Doing this we increase the
probability that two traces exhibit a suitable pair of collisions with i and j respectively
belonging to the free part and to the fixed part. When all key bytes at free positions have
been recovered, we proceed again in the same way after having changed the roles of the
fixed and free parts.

6.4 Retrieving K0 up to Two Candidates

In this step we determine K0 up to its opposite with only one new trace. As each k0,i is
known up to its opposite we are able to encrypt a chosen plaintext with mi ∈

{
k0,i,k0,i

}
inducing that mi⊕ k0,i = x1,i ∈ {0,255}. The positions of collisions allow to identify
two sets of indices, one where x1,i = 0 and the other where x1,i = 255 while we do not
know which is which. By simply complementing the plaintext bytes at one of these two
sets of indices we obtain a 16-byte vector which is equal either to K0 or K0, from which
we derive all µ0,i, j values.

The knowledge of K0 up to its opposite allows us to start building Ψ sets as detailed
in Section 6.2.

6.5 Retrieving ShiftRows Parameters

In this step we search for an already acquired trace that exhibits a first/second round
collision where we can identify the first round S-Box input as one of the few particular

values that we know to belong to a Ψa,b set of cardinal 1. This implies that the two
colliding values are equals. If we can not find this configuration in already acquired
trace we manage to generate one.

At this point we are in a suitable situation to retrieve ShiftRows parameters by the
method of Sect. 5.1 based on the analysis of 4-Collisions and 5-Collisions.

6.6 Retrieving K10 up to 216 Candidates

Knowing ShiftRows parameters allows to relate ciphertext bytes positions with posi-
tions of colliding S-Boxes in the last round. We use the same method used for K0 bytes
in Section 6.3 but applied on last round S-Box outputs. We exploit pairs of traces that
exhibit a collision between y10,i and y10, j on one trace and a collision between y′10,i and
the same y10, j on the other one. This way we can progressively recover each k10,i byte
up to its opposite.

The main difference with K0 method is that we can not fix part of the outputs of last
round S-Boxes, but this is counterbalanced by the fact that we are looking for last/last
round but also for first/last rounds collisions. Indeed a first round S-Box input x1, j can
play the same role as y10, j. We use already acquired traces and this method almost never
needs new traces.

6.7 Retrieving K10 up to Two Candidates

We know every k10,i up to its opposite. Contrarily to K0 we do not need any new encryp-
tion to retrieve K10 up to an inversion because first/last rounds collisions give us enough
information. Consider two traces (possibly the same) which both exhibit a first/last
rounds collision, and such that the two first round S-Box inputs involved in the colli-
sions have been identified as belonging to the same Ψ set. This implies that the two
last round S-Box outputs have the same Hamming weight and thus HW(ci⊕ k10,i) =
HW(c j⊕k10, j) where ci and c j are the ciphertext bytes related to both collisions. If this
Hamming weight is different from 4 we can differentiate whether a candidate on the
pair (k10,i,k10, j) is either: (i) both non-inverted or both inverted, or (ii) one inverted and
the other not:

(i)
{

HW(ci⊕ k10,i) = HW(c j⊕ k10, j)
HW(ci⊕ k10,i) = HW(c j⊕ k10, j)

(ii)
{

HW(ci⊕ k10,i) = 8−HW(c j⊕ k10, j)
HW(ci⊕ k10,i) = 8−HW(c j⊕ k10, j)

The knowledge of K10 up to its opposite and ShiftRows parameters allows us to start
building Ω sets as detailed in Section 6.2.

6.8 Identifying Ψ Sets, Ω Sets and the Ψ -Ω Links

Further steps need that we complete the identification of Ψ sets, Ω sets and links relat-
ing oneΨ set and its Ω set companion. We start by extracting the maximum information
from the already acquired traces by the three types of collisions described in Section 6.2.
Then we have to generate new traces optimized to reduce as fast as possible the missing
information.

First we complete the identification of the Ψ sets by encrypting plaintexts with bytes
chosen in order to maximize the number of couples (x1,i,x1, j) containing two values for
which it is not yet determined if they collide or not.

Then we choose plaintexts bytes in order to maximize the number of x1,i values from
not already linked Ψ sets until we complete Ω sets and Ψ -Ω links information. We use
as much as possible the relations between sets to speed up the information recovery.

6.9 Retrieving K1

In order to retrieve MixColumns and SubBytes parameters in the two following steps
we need the value of K1.

In first round the Rcon constant is always ρ0 = 1. This induces that K1 only depends
on K0, η , S(k0,12), S(k0,13), S(k0,14) and S(k0,15):

k1,0 = S(k0,12+(0+η) mod 4)⊕ k0,0⊕ρ
0

k1,1 = S(k0,12+(1+η) mod 4)⊕ k0,1

k1,2 = S(k0,12+(2+η) mod 4)⊕ k0,2

k1,3 = S(k0,12+(3+η) mod 4)⊕ k0,3

k1,i = k1,i−4⊕ k0,i for all i = 4, . . . ,15

In a first offline phase we compute a list of possible candidates for (k1,0,k1,1,k1,2,k1,3).
Note that knowing K0, K1 only depends on these four bytes. For each 16 candidates for
(K0,K10,η) we identify the Ψ sets that respectively contain k0,12, k0,13, k0,14 and k0,15.
Their Ω companion sets are respective candidates lists for all S-Box outputs involved
in above equations. We can thus build a list of (k1,0,k1,1,k1,2,k1,3) candidates for each
guess on (K0,K10,η).

In a second phase we use the knowledge acquired about Ψ and Ω sets. For each two
candidates on K10 we know S−1(0), so for each two candidates on K0 we can encrypt
plaintexts that induce 0 values as output of any first round S-Box. If we choose to force
to zero a whole column at input of MixColumns then on this column the second round
S-Box input bytes have same values as K1.

A first/second rounds collision allows to know the Ψ set that contains the con-
cerned K1 byte. We thus reduce the candidates list for one of the {k1,0,k1,1,k1,2,k1,3}
bytes. Indeed, knowing K0, any list of candidates for k1,i can be transformed in a list of
candidates for k1,i mod 4.

This reduction process leads to only one K1 value in 96.7% of cases. When sev-
eral K1 are possible12 we split the attack in several branches: for each possible K1 we
proceed with the next steps of the attack and eventually find an inconsistency that in-
validates this value. If several K1 remain valid up to the end of the attack we then have
to test each resulting AES-like specification against a plaintext/ciphertext pair.

Beside K1 this step also recovers K0, K10, ρ and up to four pairs (x,y) verifying
S(x) = y.

12 In these cases there are only 2.1 candidates on average.

6.10 Retrieving α Values

We aim to recover the 16 αi coefficients of the MixColumns matrix. To this purpose we
use 4 times a method allowing to recover 4 of them.

The knowledge of K0 and K10 allows identify all couples (x,y) verifying S(x) = y
where x and y are in Ψ and Ω sets that contain only one element, and in particular
(S−1(0),0). We can thus encrypt plaintexts such that a so-called V-vector (V,0,0,0)
is a column input of the matrix multiplication, with V a non zero known byte. This
V-vector gives an output column that expresses as (α0 ∗V,α1 ∗V,α2 ∗V,α3 ∗V). This
induces that the corresponding second round S-Boxes will have input values x2,i:

x2,i = (α j ∗V)⊕ k1,i ⇒ α j =
x2,i⊕ k1,i

V

where only α j and x2,i are unknown. A first/second rounds collision can determine the
Ψa,b set that contains x2,i, so we obtain |Ψa,b| candidates for x2,i, and therefore for α j.
By applying this method with other V we can intersect the set of candidates for every
α j until they contain only one element.

The position of V value in the V-vector relates to which αi subset we target. If V is in
position c then we target the column c of coefficients: (α4∗c+0,α4∗c+1,α4∗c+2,α4∗c+3).

To speed up the αi recovery, we choose to place two V-vectors in two input columns,
and use the 8 remaining free bytes to exhaust values in order to provoke the expected
collisions.

6.11 Retrieving the S-Box Table

With the knowledge of α coefficients we are able to complete the S-Box table. We
search in available traces (or create new ones if needed) cases where only one of the
four input bytes of a first round MixColumns column is unknown. For example we have
(W,V1,V2,V3) with only W unknown. Then x2,i = α0 ∗W⊕α4 ∗V1⊕α8 ∗V2⊕α12 ∗V3⊕
k1,i where only W and x2,i are unknown. We use the same method than in previous step:
a collision between x2,i and a first round byte gives the Ψ set this value belongs to, and
so a list of candidates for W .

One can remark that we are in better conditions than for α values because for every
value x we already know in which Ω set is y = S(x), so we can start to intersect when
the first collision is found instead of waiting for a second collision. Also we can take as
y candidates from Ω only those that have not been already associated with an other x
value.

An other remark is that when it remains only one non-associated element in a Ψ

set its S-Box image is necessarily the last available value in the corresponding Ω set.
We use this property to gain extra information during the analysis of already acquired
traces and to wisely choose our plaintexts in case we have to generate new traces.

Once a pre-image is found for some W we can check anew available traces to find
cases where W was present with a single other unknown value W ′ in an input column:
(W ′,W,V1,V2). That configuration was not exploitable because there were two unknown
bytes but as we just found W we can now use this trace to obtain information about W ′.

This step does need new traces only in very rare cases.

6.12 Retrieving ρ

The only parameter which remains unknown is the Rcon constant ρ . In order to find
this value we run an offline version of the key schedule on K0 for each ρ candidate.
Only the correct ρ value produces the known K10 as output of the key schedule.

6.13 Experimental Results

We followed the same process of simulations as for other attacks. The only difference
stays in the oracle that gives Hamming weight collisions detection instead of value
collisions.

Table 4 presents the number of traces – averaged on 10000 runs – required by each
step. For sake of clarity we also mention the steps that do not necessitate any further
trace.

Our attack on an unprotected implementation recovers the full set of secret AES
parameters as well as the key within about 250 traces on average in the intra-trace
setting. A fortiori significantly less traces would be needed in the inter-traces setting.

Table 4. Experimental results on an unprotected implementation in the Hamming weight colli-
sions model

Step # of traces # of runs
Section 6.3 - Reducing K0 entropy to 16 bits 151.9 10000
Section 6.4 - Reducing K0 entropy to 1 bit 1. 10000
Section 6.5 - Retrieving ShiftRows 11.3 10000
Section 6.6 - Reducing K10 entropy to 16 bits 0.007 10000
Section 6.7 - Reducing K10 entropy to 1 bit 0. 10000
Section 6.8 - Identifying Ψ sets, Ω sets and Ψ -Ω links 53.8 10000
Section 6.9 - Retrieving K1 12.3 10000
Section 6.10 - Retrieving MixColumns 26.2 10000
Section 6.11 - Retrieving SubBytes 0.2 10000
Section 6.12 - Retrieving Rcon 0. 10000

Total 256.6

6.14 SCARE Attack in the Hamming Weight Collisions Model with a Masking
Countermeasure

In previous Sections 6.3 to 6.12 we described a SCARE attack in the intra-trace setting
that applies on unprotected implementations in the Hamming weight collisions model

In the case of an implementation protected by the same first-order Boolean mask-
ing countermeasure as considered in Sect. 5.2, the attack is no more feasible due to
the effect of the input and output masks that spoil the detection of Hamming weight
collisions. Indeed false collisions may appear when HW(x⊕ rin) = HW(x′⊕ rin) and
HW(y⊕ rout) = HW(y′ ⊕ rout) while either HW(x) 6= HW(x′) or HW(y) 6= HW(y′).

Also true Hamming weight collisions may be undetected when either HW(x⊕ rin) 6=
HW(x′⊕ rin) or HW(y⊕ rout) 6= HW(y′⊕ rout) while HW(x) = HW(x′) and HW(y) =
HW(y′).

A means to circumvent these false decision cases is to encrypt multiple times the
same plaintext and detect those collisions which persist over these encryptions. As ex-
pected this procedure removes the false positive cases, but as a side effect it also re-
moves cases of Hamming weight collisions which are not value collisions.Actually,
only collisions of values (x = x′ and y = y′) remain detectable over multiple maskings
with different mask pairs.

The Hamming weight collision oracle thus becomes a value collision oracle through
multiple encryption of masked executions. We can take advantage of that and apply the
attack of Sect. 5.2. In this case, the number of traces required for the attack is obviously
multiplied by the number of times each plaintext is encrypted. As a conservative option
repeating each plaintext 5 times should be enough to exclude virtually all cases of false
positive and lead to an attack still feasible while requiring about 20 thousands traces13.

We did not assumed above that the order of operations was shuffled at each execu-
tion. In that case it is more tricky to turn the Hamming weight collision oracle into a
value collisions oracle. We let the study of this case as an open problem.

Note also that since we only assume the Boolean masking countermeasure, when
applying the attack of Sect. 5.2 we could certainly simplify it in many ways since the
information about collisions positions is available. Another remark is that the attack of
Sect. 5.4 – or probably a more simple version – could also apply in the case of a high-
order 128-bit masking. Here also we let the studies of these ideas to future research
work.

7 Security Recommendations Related to our Attacks

All attacks described in this paper assume a software implementation of an AES-like
block cipher on an 8-bit microprocessor.

First remark that an efficient way to thwart the IFA based FIRE attack of Sect. 4
is to implement the first-order Boolean masking counter-measure. In this case an IFA
event reveals that the value y′ = y⊕rout read from memory on the faulted execution was
zero but this may happen whatever the value of y depending on the mask value. Thus
no information about the relevant value y is obtained in this case.

Let’s consider the SCARE attacks. In the realistic Hamming weight collisions model
we show in Sect. 6 that a SCARE attack is possible even in the presence of first-order
masking. In Sect. 5.2 we also describe a SCARE attack that jeopardizes implementa-
tions with joint first-order masking and shuffling countermeasures in the value collisions
model. A (probably costly) extension of these attacks to the case of a high-order mask-
ing is also presented in Sect. 5.4 in the case where the attacker has prior knowledge
about the key. Our findings tend to limit the confidence on the strength of these kinds of
countermeasures against SCARE attacks in both collisions models. This is the reason

13 Actually this figure is certainly overestimated as in many cases there may be no collisions at
all amongst the rounds we are interested in. This situation can often be identified with only
one or two encryptions.

why we think that an efficient means to make our attacks infeasible would be to miti-
gate the side-channel signal in order to make the detection of collisions impossible or
at least quite difficult. This can be achieved by inserting time randomization or activat-
ing current noise generation possibly featured by the chip. Obviously for better security
these last countermeasures should preferably be implemented together with masking
and shuffling.

Note also that all our attacks should hardly apply on hardware implementations of
the AES, particularly if the underlying hardware features dual-rail logic that strongly
decreases the side-channel leakage and provides an opportunity to detect stuck-at faults.

Finally as our attacks stand in the chosen plaintext scenario, any application whose
specification do not allow a free choice of the AES input would be invulnerable to our
attacks.

8 Conclusion

In this paper we have investigated the problem of retrieving the secret parameters of an
AES-like block cipher derived from the standard AES function by modifying part of
or all its constant parameters (S-Box table, ShiftRows rotations, MixColumns matrix
coefficients as well as RotWord rotation and Rcon constant).

Our reverse-engineering study considered several kinds of physical attacks on soft-
ware 8-bit implementations of the secret function: an ineffective fault analysis (IFA)
based on a stuck-at-zero fault model where the fault is injected on the output of an S-
Box, and several side-channel based collision power analysis under different collisions
models where the collision is detected between the input/output pairs of two different
S-Boxes.

We have described in detail four different attacks and provided precise PC-based
simulations results for each of them:

(a) An IFA-based FIRE attack that applies on an unprotected implementation. This
attack requires about 25 thousands fault attempts.

(b) A SCARE attack under the value collisions model on an unprotected implementa-
tion. Depending on whether the attacker is able to detect collisions from different
traces or not, the proposed attack requires about one hundred or four hundreds
traces respectively.

(c) A SCARE attack under the value collisions model on an implementation jointly
protected by a first-order Boolean masking and a random shuffling of operations.
We showed that such a secured implementation can be attacked by analysing colli-
sions on less than four thousands traces.

(d) A SCARE attack under the more realistic Hamming weight collisions model on an
unprotected implementation. This attack is particularly efficient and only requires
analysing about 250 traces.

We also proposed – without having simulated them – several extensions of our at-
tacks: three extensions of attacks (a) and (b) to alternative definitions of Rcon constant
with a larger entropy, and an extension of attack (c) to the case of a high-order Boolean
masking when the attacker has some prior knowledge about the key. We also argued

that multiple encryption of the same plaintext makes attack (c) also applicable under
the relaxed Hamming weight collisions model.

Beside providing different security recommendations with respect to our attacks, we
also identified several problems that could be further studied as future research works.

Our results demonstrates the necessity to protect the implementation of a block
cipher against physical attacks even though its specifications are not public.

Acknowledgements

This work has been conducted under the framework of the MARSHAL+ (Mechanisms
Against Reverse-engineering for Secure Hardware and Algorithms) research project,
subsidized by FUI 12, and co-sponsored by the competitiveness clusters System@tic
and SCS.

Practical results presented in this paper have been partly performed on the CALI
computing cluster of university of Limoges, funded by the Limousin region, XLIM,
IPAM and GEIST institutes, as well as the university of Limoges.

Bibliography

[1] Eli Biham and Adi Shamir. Differential Fault Analysis of Secret Key Cryptosys-
tems. In Burton S. Kaliski, Jr, editor, Advances in Cryptology – CRYPTO ’97,
volume 1294 of Lecture Notes in Computer Science, pages 513–525. Springer-
Verlag, 1997.

[2] Alex Biryukov, Andrey Bogdanov, Dmitry Khovratovich, and Timo Kasper. Col-
lision Attacks on AES-Based MAC: Alpha-MAC. In Paillier and Verbauwhede
[27], pages 166–180.

[3] Andrey Bogdanov. Improved Side-Channel Collision Attacks on AES. In
Carlisle M. Adams, Ali Miri, and Michael J. Wiener, editors, Selected Areas in
Cryptography – SAC ’07, volume 4876 of Lecture Notes in Computer Science,
pages 84–95. Springer, 2007.

[4] Andrey Bogdanov. Multiple-Differential Side-Channel Collision Attacks on AES.
In Elisabeth Oswald and Pankaj Rohatgi, editors, Cryptographic Hardware and
Embedded Systems – CHES ’08, volume 5154 of Lecture Notes in Computer Sci-
ence, pages 30–44. Springer, 2008.

[5] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the Importance
of Checking Cryptographic Protocols for Faults (Extended Abstract). In Wal-
ter Fumy, editor, Advances in Cryptology – EUROCRYPT ’97, volume 1233 of
Lecture Notes in Computer Science, pages 37–51. Springer-Verlag, 1997.

[6] Éric Brier, Christophe Clavier, and Francis Olivier. Correlation Power Analysis
with a Leakage Model. In Joye and Quisquater [15], pages 16–29.

[7] Christophe Clavier. Secret External Encodings Do not Prevent Transient Fault
Analysis. In Paillier and Verbauwhede [27], pages 181–194.

[8] Christophe Clavier. An Improved SCARE Cryptanalysis Against a Secret A3/A8
GSM Algorithm. In Patrick Drew McDaniel and Shyam K. Gupta, editors, Inter-
national Conference on Information Systems Security – ICISS ’07, volume 4812
of Lecture Notes in Computer Science, pages 143–155. Springer, 2007.

[9] Christophe Clavier and Antoine Wurcker. Reverse Engineering of a Secret AES-
like Cipher by Ineffective Fault Analysis. In Wieland Fischer and Jörn-Marc
Schmidt, editors, Fault Diagnosis and Tolerance in Cryptography – FDTC ’13,
pages 119–128. IEEE Computer Society Press, 2013.

[10] Christophe Clavier, Benedikt Gierlichs, and Ingrid Verbauwhede. Fault Analysis
Study of IDEA. In Tal Malkin, editor, Topics in Cryptology – CT-RSA ’08, volume
4964 of Lecture Notes in Computer Science, pages 274–287. Springer, 2008.

[11] Christophe Clavier, Benoit Feix, Georges Gagnerot, Mylène Roussellet, and Vin-
cent Verneuil. Improved Collision-Correlation Power Analysis on First Order
Protected AES. In Preneel and Takagi [28], pages 49–62.

[12] Christophe Clavier, Quentin Isorez, and Antoine Wurcker. Complete SCARE
of AES-like Block Ciphers by Chosen Plaintext Collision Power Analysis. In
Goutam Paul and Serge Vaudenay, editors, International Conference on Cryp-
tology in India – INDOCRYPT ’13, Lecture Notes in Computer Science, pages
116–135. Springer, 2013.

[13] Rémy Daudigny, Hervé Ledig, Frédéric Muller, and Frédéric Valette. SCARE
of the DES. In John Ioannidis, Angelos D. Keromytis, and Moti Yung, editors,
Applied Cryptography and Network Security – ACNS ’05, volume 3531 of Lecture
Notes in Computer Science, pages 393–406. Springer-Verlag, 2003.

[14] Sylvain Guilley, Laurent Sauvage, Julien Micolod, Denis Réal, and Frédéric
Valette. Defeating Any Secret Cryptography with SCARE Attacks. In Michel
Abdalla and Paulo S. L. M. Barreto, editors, Progress in Cryptology – LATIN-
CRYPT ’10, volume 6212 of Lecture Notes in Computer Science, pages 273–293.
Springer, 2010.

[15] Marc Joye and Jean-Jacques Quisquater, editors. Cryptographic Hardware and
Embedded Systems – CHES ’04: 6th International Workshop Cambridge, MA,
USA, August 11-13, 2004. Proceedings, volume 3156 of Lecture Notes in Com-
puter Science, 2004. Springer-Verlag.

[16] Marc Joye, Jean-Jacques Quisquater, Sung-Ming Yen, and Moti Yung. Observ-
ability Analysis – Detecting When Improved Cryptosystems Fail. In Bart Preneel,
editor, Topics in Cryptology – CT-RSA ’02, volume 2271 of Lecture Notes in Com-
puter Science, pages 17–29. Springer-Verlag, 2002.

[17] Çetin Kaya Koç and Christof Paar, editors. Cryptographic Hardware and Embed-
ded Systems – CHES ’00, Second International Workshop, Worcester, MA, USA,
August 17-18, 2000, Proceedings, volume 1965 of Lecture Notes in Computer
Science, 2000. Springer-Verlag.

[18] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In Neal Koblitz, editor, Advances in Cryptology –
CRYPTO ’96, volume 1109 of Lecture Notes in Computer Science, pages 104–
113. Springer-Verlag, 1996.

[19] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In
Michael J. Wiener, editor, Advances in Cryptology – CRYPTO ’99, volume 1666
of Lecture Notes in Computer Science, pages 388–397. Springer-Verlag, 1999.

[20] Rita Mayer-Sommer. Smartly Analyzing the Simplicity and the Power of Simple
Power Analysis on Smartcards. In Koç and Paar [17], pages 78–92.

[21] Thomas S. Messerges. Using Second-Order Power Analysis to Attack DPA Re-
sistant Software. In Koç and Paar [17], pages 238–251.

[22] Thomas S. Messerges, Ezzy A. Dabbish, and Robert H. Sloan. Investigations of
Power Analysis Attacks on Smartcards. In WOST ’99: Proceedings of the USENIX
Workshop on Smartcard Technology, pages 151–162, Berkeley, CA, USA, 1999.
USENIX Association.

[23] National Bureau of Standards. Data Encryption Standard. Federal Information
Processing Standard #46, 1977.

[24] National Institute of Standards and Technology. Advanced Encryption Standard
(AES). Federal Information Processing Standard #197, 2001.

[25] Roman Novak. Side-Channel Attack on Substitution Blocks. In Jianying Zhou,
Moti Yung, and Yongfei Han, editors, Applied Cryptography and Network Se-
curity – ACNS ’03, volume 2846 of Lecture Notes in Computer Science, pages
307–318. Springer-Verlag, 2003.

[26] Roman Novak. Sign-Based Differential Power Analysis. In Kijoon Chae and
Moti Yung, editors, Workshop on Information Security Applications – WISA ’03,

volume 2908 of Lecture Notes in Computer Science, pages 203–216. Springer,
2003.

[27] Pascal Paillier and Ingrid Verbauwhede, editors. Cryptographic Hardware and
Embedded Systems – CHES ’07, 9th International Workshop, Vienna, Austria,
September 10-13, 2007, Proceedings, volume 4727 of Lecture Notes in Computer
Science, 2007. Springer-Verlag.

[28] Bart Preneel and Tsuyoshi Takagi, editors. Cryptographic Hardware and Embed-
ded Systems - CHES 2011 - 13th International Workshop, Nara, Japan, September
28 - October 1, 2011. Proceedings, volume 6917 of Lecture Notes in Computer
Science, 2011. Springer.

[29] Denis Réal, Vivien Dubois, Anne-Marie Guilloux, Frédéric Valette, and M’hamed
Drissi. SCARE of an Unknown Hardware Feistel Implementation. In Gilles Gri-
maud and François-Xavier Standaert, editors, Smart Card Research and Advanced
Application – CARDIS ’08, volume 5189 of Lecture Notes in Computer Science,
pages 218–227. Springer, 2008.

[30] Matthieu Rivain and Thomas Roche. SCARE of Secret Ciphers with SPN struc-
tures. In Kazue Sako and Palash Sarkar, editors, Advances in Cryptology – ASI-
ACRYPT ’13, volume 8269 of Lecture Notes in Computer Science, pages 526–544.
Springer-Verlag, 2013.

[31] Kai Schramm, Thomas J. Wollinger, and Christof Paar. A New Class of Collision
Attacks and Its Application to DES. In Thomas Johansson, editor, Fast Software
Encryption – FSE ’03, volume 2887 of Lecture Notes in Computer Science, pages
206–222. Springer-Verlag, 2003.

[32] Kai Schramm, Gregor Leander, Patrick Felke, and Christof Paar. A Collision-
Attack on AES: Combining Side Channel- and Differential-Attack. In Joye and
Quisquater [15], pages 163–175.

[33] Sung-Ming Yen and Marc Joye. Checking Before Output May Not Be Enough
Against Fault-Based Cryptanalysis. IEEE Transactions on Computers, 49(9):967–
970, 2000.

