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Abstract. Side Channel Analysis (SCA) is known to be a serious threat
for cryptographic algorithms since twenty years. Recently, the explosion
of the Internet of Things (IoT) has increased the number of devices that
can be targeted by these attacks, making this threat more relevant than
ever. Furthermore, the evaluations of cryptographic algorithms regard-
ing SCA are usually performed at the very end of a product design cy-
cle, impacting considerably the time-to-market in case of security flaws.
Hence, early simulations of embedded software and methodologies have
been developed to assess vulnerabilities with respect to SCA for spe-
cific hardware architectures. Aiming to provide an agnostic evaluation
method, we propose in this paper a new methodology of data collection
and analysis to reveal leakage of sensitive information from any software
implementation. As an illustration our solution is used interestingly to
break a White Box Cryptography (WBC) implementation, challenging
existing simulation-based attacks.

Keywords: Software analysis, GNU Debugger (GDB), Differential Com-
putation Analysis (DCA), Correlation Power Analysis (CPA), binary
analysis, realignment algorithm, CatalyzrTM tool.

1 Introduction

1.1 Previous Work

Measuring Electromagnetic (EM) or power traces from embedded devices to
identify potential leakage of information is a time consuming and challenging
process. First, it requires equipment (oscilloscope, probes, signal amplifiers. . . )
that demand prior knowledge to the technician. Secondly, the code to evaluate
needs to be embedded on the final product or on an evaluation board, it means
that the development has to be finished at the evaluation time. This justifies
the interest of the security evaluation community for simulation, both in the
industrial and academic world. Aiming to speed-up, facilitate the evaluation,
and allowing an evaluation during the development, several works have proposed
Side Channel (SC) trace simulators. The principle is to simulate the leakage that



might happen during the code execution. Numerous simulators are available to
simulate SC (power or EM) leakage. All present a similar general construction
flow illustrated in Fig. 1. First, they take a description of the implementation
to evaluate as input. For example, the inputs of SILK [13] are tagged C++
source codes. More often, inputs are architecture dependant compiled binaries:
Elmo [9] uses binaries for the ARM Cortex-M0 and OSCAR [11] uses binaries
for the 8-bit Atmel AVR microcontroller. The Dynamic Binary Analyzer (DBA)
framework [2] supports more architectures: ARM, x86, MIPS, SPARC and SH4.
In the simulation step, the SC-simulators execute the code to record data. For
example, Elmo [9] uses the emulator Thumbulator, while in [3] the authors use
the Valgrind debugger. The choice of the data provider is influenced by the fact
that the simulator is specific to an architecture. Another important choice of the
simulation step is the selection of the data to record. The authors of [3] proposed
to record the memory accesses. The DBA framework [2] records the stack, the
heap, the CPU-registers and the executed instructions. Elmo [9] is focused on
the values of the operands, the bit-flips of the operations and the operations.
The last step is the trace generation, or how to transform the recorded data
to obtained traces as similar as possible to real and effective physical leakage.
Elmo [9] provides one of the most realistic and complex model computed with
linear regressions (also used in [5]) and F-test on real leakage traces recorded on a
ARM Cortex-M0. Otherwise, the most commonly used models are the Hamming
weight and the Hamming distance, which are simplifications of effective physical
leakage. Those models have been preferred by the authors of [2, 11].

Inputs: C, C++,
VHDL, compiled
code. . .

Simulation

Additional inputs:
target descriptions,
emulator, data to
record. . .

Traces generation
Additional inputs:
leakage models, leak-
age functions. . .

Outputs: traces

Fig. 1: General flow commonly used by the SC-simulators.
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1.2 Contributions

In this context, we propose a new methodology of data collection and analysis to
identify potential leakages from any software implementation. Our solution takes
inspiration from the work proposed by Bos et al. in [3] . An improvement of the
analysis step has been proposed in [1], realizing on three intermediate computa-
tions instead of one initially. As a first difference, we propose a new methodology
of data collection. We record all bit-modifications that happen during a code ex-
ecution (registers, memory content, flags, Program Counter (PC)), while in [3],
authors record only the read, written and executed addresses. Furthermore, we
do not apply any model to the recorded data in order to generate traces. All the
collected data is exhaustively analyzed to avoid information loss. To do so, we
introduce a binary analysis to extract the leaking points from the data. Then,
we leverage on PC to keep track of the execution context to map the identified
leakage to the source code. Indeed, mapping leakages to source code is nowadays
an important need for continuous improvement of products; this is particularly
true for software implementations, where traces are long and code is complex. To
succeed, we need to overcome two main difficulties: misalignment and multiplic-
ity of leaking resources. We show how to characterize and then exploit the PC
to realign all the data using a simple accumulative algorithm, and we introduce
a methodology of data selection that significantly reduce the size of the data to
analyze. Finally, we show how our solution can identify leakage in the source
code applying our methodology to WBC implementation.

1.3 Outline

The paper is organized as follows. In the Sec. 2 we describe each step of our
solution. In the Sec. 3 we present an evaluation performed with our solution on
a WBC implementation. Finally, we summarize the presented work in Sec. 4.

2 Solution Presentation

We present here-after how the CatalyzrTM tool collects, pre-processes, and anal-
yses simulation traces.

2.1 Notation and Recording Step

Aiming to record all the data manipulated by a given binary, the debugger GDB
is used, but alternative software could be used to collect data. The analysis that
we propose is independent of the data provider. To identify all potential leakages,
the recording process is as exhaustive as possible. Each time the PC changes,
all the internal data are saved (PC, registers, flags. . . ). For example, in the case
of an x86 architecture in 64-bit execution (properties of the system used for all
the results given in the current paper), the internal data are:
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– the sixteen 64-bit registers: rax, rbx, rcx, rdx, rsi, rdi, rbp, rsp,

r8, r9, r10, r11, r12, r13, r14, r15,
– the six 16-bit registers: cs, ss, ds, es, fs, gs,
– the 64-bit eflags (with the bit 1, 5, 15, 22-63 reserved).
– the PC (Program Counter, also named rip)

In the whole document, the matrix notations are used. The recorded data of
an execution is stored in a matrix noted XD,R ∈ (Z/2Z)D,R, with D the number
of times the PC changes and R the number of bit needed to store all the internal
data (except the PC that is stored independently, and used in resynchronization
process deepened in Subsec. 2.2). For a given dataset XD,R, the associated list of
successive PC-values is stored in a matrix PcD ∈ (Z/264Z)D. An illustration of
a recorded trace is provided in Fig. 2, the black color corresponds to one and the
white to zero, the x-axis describes the internal data and the y-axis the index of
the PC. The illustrated trace follows from the execution of the WBC algorithm
freely provided at the Challenge CHES-20164. The illustration of the recorded
trace provided in Fig. 2 shows that only a little part of the registers seems to
be used during the execution. The reduction of the size of manipulated data is

detailed in Subsec. 2.3. A set of Q executions is noted as {XDq,R
q ,PcDq

q }q<Q,

Fig. 2: Representation of a recorded trace of a WBC algorithm using GDB,
black points correspond to one values, and white to zero values.

an element of XD,R is noted Xd,r and XR
d (resp. XD

r ) refers to a row matrix
(resp. a column matrix). In the context of the SCA, the traces are commonly
compared with distributions of intermediate values manipulated by the target

4 http://ctf.newae.com/

4

http://ctf.newae.com/


and dependent of a secret variable (generally a cryptographic key). We store
those distributions in the matrix Y S,Q,K,B , with S the dimension of the leakage
model, B the number of bytes of the secret and K the number of possible values
for each secret bytes (256 if no values are forbidden). For example, if the target
algorithm is the Advanced Encryption Standard (AES)-128, and if the focused
sensitive intermediate values are the output of the Substitution-box function
(Sbox) at the first round, the distribution for a bit-level model is expressed as
in the following Formula 1:

Y S,Q,K,B =

{
(Sbox(Pq,b ⊕ k) & 2s

)
>> s}s<8,k<256

q<Q,b<16
(1)

The choice of the bit-level model is motivated by the bit representation of the
recorded data XD,R ∈ (Z/2Z)D,R. To lighten the notations, the dimension B is
not always precised.

2.2 Realignment Algorithm

The first problematic met in the proposed study is the misalignment of the
data. Indeed, misalignment could be due to the randomization of the execution,
or more generally, by the presence of conditional branches. A vertical alignment
is a prerequisite point to realize vertical analysis. Most of the vertical analysis
techniques, as CPA [4] or Linear Regression Analysis (LRA) [7] need the data

XR,Q
d manipulated at the sample d < D to come from the same operation. The

resynchronization is a well known and a well studied problem in the SCA do-
main [6,8,10,12]. All the proposed algorithms of resynchronization are based on
the leaking values distribution in the temporal or in the frequency domain. In
our case we have access to additional information thanks to the PC values. In
fact, the PC values can be viewed as an identifier. For example ∀q < Q,∀dq <
Dq, Pcdq,q is an identifier for the data XR

dq,q
. Furthermore, if for d0 < D0, d1 <

D1, Pcd0,0 = Pcd1,1 it means that the two datasets XR
d0,0

and XR
d1,1

are the re-
sult of the same operation in the code (at the assembly level). However the
presence of a loop in the source code could imply repetitions of PC value. Hence
evince, if the two datasets XR

d0,0
, XR

d1,1
result form the same operation they

may come from distinct iterations. Moreover, conditional branching in the code
produce misalignment. The goal of the proposed realignment algorithm is to

transform the raw dataset {XDq,R
q ,PcDq

q }q<Q into the dataset {XD,R,Q,PcD}
where ∀ d < D, ∀ q0 < Q, ∀q1 < Q, XR

d,q0
and XR

d,q1
result in the same oper-

ation, at the same iteration. The main constraints are the execution time and
memory required. We proposed here a single-pass realignment algorithm detailed
in Schedule 1. The fact that we only need the PC values to resynchronize the
data significantly reduces the computational time and the needed memory. In-
deed, our algorithm of resynchronization only have to read one time the Dqq<Q

64-bit PC values instead of the {XDq,R}q<Q bit of data in the case of an al-
gorithm based on the entire dataset. To provide details on the last assumption
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of the Eq. 2, the two Def. 1 are needed. The whole algorithm described in the
Schedule 1 reveals the fix-points and the pseudo fix-points that are automatically
realigned.

Definition 1. Fix-point and pseudo fix-point

– A fix-point is a PC value with a deterministic presence and a deterministic
number of occurrence:

Pcd ∈ {PcDq
q }q<Q is a fix-point

⇐⇒ ∃ m ∈ N,
Dq∑

dq=1

{
1 if Pcdq,q = Pcd

0 otherwise
= m ∀q < Q.

– A pseudo fix-point is a PC value with a deterministic number of appear-
ance, in the case it appears (so a fix-point is also a pseudo fix-point):

Pcd ∈ {PcDq
q }q<Q is a pseudo fix-point

⇐⇒ ∃ m ∈ N,
Dq∑

dq=1

{
1 if Pcdq,q = Pcd

0 otherwise
∈ {0,m} ∀q < Q.

To illustrate the proposed realignment algorithm, we first start with an ap-
plication to a simple example. The Fig. 3 displays a control flow graph with
a conditional branching, a loop and a conditional branching inside. The letters
A, B, C, . . . , I are the PC values. The probability associated to each condi-
tional branching are p0 and p1. The presented results have been obtained with
p0 = 1/2 and p1 = 1/3. Three distinct executions of the proposed flow graph
gave the following PC successions:

{PcDq}q<3 =


PcD0 = A,B,D,E,H, I, E,H, I, E, F,G, I

PcD1 = A,B,D,E, F,G, I, E,H, I, E, F,G, I

PcD2 = A,C,D,E,H, I, E,H, I, E, F,G, I

(2)

A

B

C

D E

F G

H

I

p0

1− p0

p1

1− p1

input outputif

else

if

else

3 times

Fig. 3: Control flow of the presented example
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1. get the set of all possible PC values:

PcD
′

=

Q−1⋃
q=0

Pc
Dq
q , with D′ the number of distinct possible values of PC over Q

2. accumulate in the matrix #PcD
′,Q the numbers of times each PC appears in

each trace:

#PcD
′,Q =

[
#Pcd,q =

Dq−1∑
dq=0

{
1, if Pcdq,q = Pcd

0, otherwise

]
d<D′
q<Q

3. the fix-points and the pseudo fix-points are stored in FD with its associated
number of appearance:

FD′′,2 = {(Pcd,md) ∈ (PcD
′
,N)|∃ m ∈ N, #Pcd,q ∈ {0,m}, ∀ q < Q, }

4. finally the axis PcD(=
∑D′′

d=1 md) of PC used for the alignment is created using
FD′′,2:

PcD = {

F0,1times︷ ︸︸ ︷
F0,0, . . . ,F0,0, . . . ,

FD′′−1,1times︷ ︸︸ ︷
FD′′−1,0, . . . ,FD′′−1,0}

= {

m0times︷ ︸︸ ︷
Pc0, . . . ,Pc0, . . . ,

mD′′−1times︷ ︸︸ ︷
PcD′′−1, . . . ,PcD′′−1}

Schedule 1: step-by-step description of the realignment algorithm
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Fig. 4: #PcD
′,Q for Q = 1000 executions of the flow graph described in Fig. 3,

with D′ = 8 and PcD
′

= {A,B,C,D, . . . , I}. The colors refer to the number of
time each PC appear in each execution.

The application of the proposed realignment algorithm, described in the
Schedule 1, to a thousand execution of the flow graph detailed in Fig. 3, gave

the matrix #PcD
′,Q displayed in Fig. 4.

The realignment algorithm designates A, D, E and I as fix-points; B, C
as pseudo fix-points while the PC F, G and H could not be realigned in the
preliminary study. Those PC need more information to be realigned. Finally,
the realignment algorithm gives the following output:

FD′′ = {(A, 1), (B, 1), (C, 1), (D, 1), (E, 3), (I, 3)}
PcD = {A,B,C,D,E,E,E, I, I, I}.

If we go back to the three execution traces given in the Eq. 2, the resynchro-
nization is done as written in Fig. 5, with in red the elements affected by the
realignment.

The algorithm of realignment have been applied to a real-world masked im-
plementation of an AES-128, the results obtained are displayed in Fig. 7. It
reveals that some PC, around the index 100 seem to be neither fix-points nor
pseudo fix-points. This aspect is confirmed by the results of the computation

of the mean and the standard deviation of #PcD
′,Q over Q displayed in Fig. 7.

In fact, this three figures show that two PC values have non-constant number
of apparition in all the executions. In addition to give the PC that causes the
misalignment and the resynchronized axis of PC, the algorithm helps to find
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{XD,q}q<3 =
XD,R,0 = {X0,R,0, X1,R,0, 0, X2,R,0, X3,R,0, X6,R,0, X9,R,0, X5,R,0, X8,R,0, X12,R,0}

XD,R,1 = {X0,R,1, X1,R,1, 0, X2,R,1, X3,R,1, X7,R,1, X10,R,1, X6,R,1, X9,R,1, X13,R,1}

XD,R,2 = {X0,R,2, 0, X1,R,2, X2,R,2, X3,R,2, X6,R,2, X9,R,2, X5,R,2, X8,R,2, X12,R,2}

Fig. 5: Results of the resynchronization

the lines in the source code that provoke the misalignment. This matching from
the PC values to the source lines code is made easier by the usage of GDB
to record the leakage.Furthermore, the localization of the misalignment origins
helps to identify timing leakage. In our example illustrated in Fig. 7, the realign-
ment reveals that the misalignment is caused by the function xtime transcribed
in Fig. 6a. This function multiplies the input b by two in GF(28), but this imple-
mentation contains conditional statement that misalign the data and that could
produce time leakage. A possible improvement can be the usage of the constant
time implementation of xtime provided in Fig. 6b. Our realignment algorithm
immediately and precisely identify the non-constant time line in the source code.
This information is very useful for a developer that want to implement constant
time algorithm aim to protect his code against the timing attacks.

unsigned char xtime (unsigned char b)
{
unsigned char const tmp = b<<1;
return (b&0x80)?(tmpˆ0x1b):tmp;
}

(a) implementation with conditional
branch

unsigned char xtime (unsigned char b)
{
return (x<<1)ˆ((x>>7)∗0x1b);

}

(b) constant time implementation

Fig. 6: Implementations of xtime used in the MixColumns function of the AES

2.3 Data Reduction

Once the recorded data are realigned, if necessary, we have now access to the
resynchronized data XD,R,Q and the associated PC vector PcD. Now that it
is possible to analyze vertically the data, two questions arise. Are all the data
in XD,R,Q relevant? And is it possible to reduce the dimension of the data to
analyze? To answer these questions, we define the notion of activity matrix in
Def. 2 and of transition matrix Def. 3.
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Fig. 7: Results of the application of the realignment algorithm to a masked
implementation of an AES-128. The mean (on the left) and the standard

deviation (in the middle) over Q of #PcD
′,Q (in the right) for thousand

executions (Q = 1000) and around thousand distinct values of PC
(D′ ' 1000). The colors refer to the number of time each PC appear in each

trace. This results have been obtained by executing a real-world masked
implementation of an AES-128.

Definition 2. The activity matrix AD,R of a given set XD,R,Q is defined as
follow:

AD,R =

[
Ad,r =

{
1, if

∑Q−1
q=0 Xd,r,q /∈ {Q, 0}

0, otherwise

]
d<D,
r<R

The activity matrix of a given dataset identifies the points ((d, r) ∈ D×R) with
a non-zero variance over Q.

Definition 3. The transition matrix TD,R of a given set XD,R,Q is defined
as follow:

TD,R =

[
Td,r =

{
1, if d = 0

∨Qq=1Xd−1,r ⊕Xd,r otherwise

]
d<D,
r<R

The transition matrix identifies the points ((d, r) ∈ D×R) that change at least
one time between the PC d and d+ 1 over all the traces. Both matrix TD,R and
AD,Q could be computed in-line accumulating each trace. Then, we identify the
points that could leak information as L = {(d, r) ∈ (D × R)|Td,r ∧ Ad,r = 1}.
In Fig. 8, the matrices AD,R, TD,R and AD,R ∧ TD,R obtain analyzing a data
set of 250 traces of execution of an AES WBC implementation. We observe
that our algorithm permits to identify the 0.29% from the entire samples that
could leak information. Thus we conserve only 20190 PC values over 28277
and 120 bit register over 1472. This data reduction speeds up the analysis and
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Fig. 8: Illustration of the matrices AD,R (on the top),TD,R (in the middle) and
AD,R ∧ TD,R (on the bottom). In white are displayed the 0 and the 1 in black.

reduce the memory footprint analyzing only the data XL,Q. Furthermore we take
advantage of the very low density of the sparse matrices {XD,R

q }q<Q to reduce
the storage required for the traces. The storage of sparse matrices is a well study
problematic in computer science and a lot of solutions are freely provided. The
following Tab. 1 summarizes the gain in storage that we obtain using a method
called Compressed Sparse Column matrix (CSC) present in scipy5. Thus, the
needed memory to store the traces XD,R,Q decrease from 9, 7Go to 132Mo using
the CSC compression on the matrix TD,R,Q defined in Eq. 3.

2.4 Distinguisher: CPA

The potential leakage points have been identified and stored in the dataset XL,Q.
To know if some of those points leak sensitive information, we use the CPA pro-
posed by Brier et al. in 2004 [4]. In our case, the guessed intermediate values
are stored in Y S,Q,K,B as explained in the Eq. 1. The CPA is based on the com-
putation of the Pearson coefficient between XL,Q and Y S,Q,K,B to discriminate

5 https://www.scipy.org/
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{(XD,R
q }q<Q 8-bit

matrix
{(XD,R

q }q<Q CSC 8-
bit matrix

{(TD,R
q }q<Q CSC 8-

bit matrix

size 9, 7Go 2, 6Go 132Mo
with

{(TD,R
q }q<Q =

[{
Xd,r,q, if d = 0

Xd−1,r,q ⊕Xd,r,q otherwise

]
q<Q,r<R

d<D

(3)

Tab 1: Benchmark of the needed memory to store the traces XD,R,Q for
Q = 250 using distinct formats.

the right key {k?b}b<B as defined in the following Eq. 4.

D(XL,Q, Y S,Q,K,B) =

{
cov(XL,Q, Y Q

s,k,b)

σ(XL,Q)σ(Y Q
s,k,b)

}
k<256,S<8

b<16

,

where σ is the variance and cov the covariance both over Q.

(4)

Then we identify the leaking samples using the Absolute distinguishing margin
(AbsMarg) proposed by Whitnall et al. in [14] and recalled in the following Eq. 5.
The usage of the AbsMarg metric is motivated by the presence of ghost peaks
in the results of CPA.

AbsMarg (D(XL,Q, Y Q
s,b))

=

D(XL,Q, Y Q
s,k?,b)−maxkb<256,

k 6=k?
b

{D(XL,Q, Y Q
s,k,b)}

((((((((
D(Y Q

s,k?,b, Y
Q
s,k?,b)︸ ︷︷ ︸

=1

−maxkb<256,
k 6=k?

b

{D(Y Q
s,k?,b, Y

Q
s,k,b)}

(5)

We take advantage that we analyze binary dataset to simplify the accumula-
tive formula of the Pearson coefficient given in Eq. 6. This simplification speeds
up the analysis and reduces the memory footprint.

D(XL,Q,Y Q
s,k,b)

=
acc xy− 1

Q (acc x.acc y)√
acc xx− 1

Q (acc x.acc x)
√

acc yy− 1
Q (acc y.acc y)

=
acc xy− 1

Q (acc x.acc y)√
acc x− 1

Q (acc x.acc x)
√

acc y− 1
Q (acc y.acc y)

(6)
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where we define the acc ? as follow,

acc xy =

Q∑
q=1

XL
q .Ys,k,b,q

acc x =

Q∑
q=1

XL
q =

Q∑
q=1

(XL
q )2 = acc xx

acc y =

Q∑
q=1

Ys,k,b,q =

Q∑
q=1

(Ys,k,b,q)2 = acc yy

3 Results

In the following analyses, we use the known-plaintext attack model, which means
that an attacker only requires access to the random inputs. Additionally, the
attack could be performed with just the compiled binary. The source code access
is only mandatory to map the leakages to the source code.

3.1 WBC Analysis

As presented in the previous Subsec. 2.4 we use the CPA to reveal leakage
from XL,Q and discriminate the secret key {k?b}b<16 from the guesses {kb|kb 6=
k?b}b<16. As proposed in [1], we extend our leakage model Y to take into account
the two products computed during the MixColumn execution. In [1] authors
proposed to compute three distinct 8-bit Differential Power Analysis (DPA) while
the two products only add ten new bit-distributions to the initial model. Indeed
the model extension makes growing the model size S from 8 to 18, and not
to 24, because 6 bit-distributions are redundant as resumed in the following
Proposition 1.

Proposition 1. ∀x ∈ N, with x < 256 the products by two and three computed
in the MixColumn function respect the following properties:

– the bit 2 of 2.x is equal to the bit 1 of x
– the bit 5 of 2.x is equal to the bit 4 of x
– the bit 6 of 2.x is equal to the bit 5 of x
– the bit 7 of 2.x is equal to the bit 6 of x
– the bit 0 of 2.x is equal to the bit 7 of x
– the bit 0 of 3.x is equal to the bit 1 of 2.x

The Proposition 1 permits to construct an extended model expressed in the
following formula 7.

The Fig. 9 illustrates the results obtained by applying the CPA on Q = 250
recorded traces from the WBC implementation provided at the Capture The
Flag (CTF) challenge of CHES-2016. The CPA has been computed for all sam-
ples L ( 120k) but to facilitate the visualization we focus on the first 20k samples
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Y S,Q,K,B =

[
Sbox (Pq,b ⊕ k) & 2s, if s < 8

(2.Sbox (Pq,b ⊕ k)) & 2v[s−8], if 7 < s < 11, with v = {1, 3, 4}
(3.Sbox (Pq,b ⊕ k)) & 2s−10, if 10 < s

]
s<18,k<256,
q<Q,b<16

(7)

where the leaking ones are localized. In grey we display the results obtained with

the bad guesses:

{
maxkb<256,kb 6=k?

b
(D(XL,Q, Y Q

s,k,b))

}
b<16,s<18

and in color the

result obtained with the right key:

{
D(XL,Q, Y Q

s,k?,b)

}
b<16,s<18

. As first result

we notice that all key byte are recovered. It is a another powerful advantage
of our analysis that lead us to easily and quickly recover the secret of a WBC
implementation. To improve the discrimination of the leaking samples from the

Fig. 9: Results of the CPA on recorded data from a WBC implementation.

computed CPA we use the AbsMarg displayed in Fig 10, in which we apply
a threshold at 0.25. Then, using the PC values we map the identified leaking
samples to the source code. We summarize the obtained results in the two Tab 1
provided in the appendix in which we link each leakage to a line code, a leaking
bit model, and bit register.
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Fig. 10: AbsMarg of the CPA’s results. Only the samples with a positive
AbsMarg samples are plotted.

4 Conclusion

We present in this paper a new methodology of SC evaluation for software imple-
mentation. We improve the state of the art in that field by providing a practical
and effective methodology to extract all the data that will be manipulated by a
software implementation during its execution. All the recorded data are analyzed
independently, at bit level, without any arbitrary leakage model applied to gen-
erate traces as in all the SC-simulators presented in the state of the art (as far as
we know). These features give to our solution exhaustive properties and suppress
the noise that a leakage model could generate. Our exhaustive approach makes
it agnostic for the target hardware by focusing the analysis on the manipulated
data and not on hardware characteristics. Furthermore, our methodology allows
to map, in the time and in the space, the leakage of sensitive information to the
source code, and this can be of significant help for an evaluator or a developer.
Advantageously, we provide two additional new methods to support and improve
the SCA assessment. First, we describe an efficient resynchronization algorithm
based on the control flow values. Second, we give a methodology of samples se-
lection to significantly decrease the number of samples to analyze without any
loss of information. Both features are crucial when analyzing complex and/or
massive software implementations.
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11. Céline Thuillet, Philippe Andouard, and Olivier Ly. A smart card power analysis
simulator. In Proceedings of the 12th IEEE International Conference on Com-
putational Science and Engineering, CSE 2009, Vancouver, BC, Canada, August
29-31, 2009, pages 847–852, 2009.

12. Jasper G. J. van Woudenberg, Marc F. Witteman, and Bram Bakker. Improving
differential power analysis by elastic alignment. In Topics in Cryptology - CT-RSA
2011 - The Cryptographers’ Track at the RSA Conference 2011, San Francisco, CA,
USA, February 14-18, 2011. Proceedings, pages 104–119, 2011.

13. Nikita Veshchikov. SILK: high level of abstraction leakage simulator for side chan-
nel analysis. In Proceedings of the 4th Program Protection and Reverse Engineering
Workshop, PPREW@ACSAC 2014, New Orleans, LA, USA, December 9, 2014,
pages 3:1–3:11, 2014.

14. Carolyn Whitnall and Elisabeth Oswald. A fair evaluation framework for com-
paring side-channel distinguishers. J. Cryptographic Engineering, 1(2):145–160,
2011.

Appendix

line source code reg.
name

bit
reg.

leaking
value

leaking
bit

key
byte

l.4086: v16 = lookup nibble2(table 4436, v16, v18, 0); rsi 1 x 7 0
l.4128: v22 = lookup nibble2(table 4499, v22, v23, 0); rbp 0 3.x 4 0
l.4420: v18 = lookup nibble(table 13890, v4); r14 3 x 4 1
l.4417: v2 = lookup nibble2(table 4934, v16, v2, 0); r15 1 3.x 1 1
l.4417: v2 = lookup nibble2(table 4934, v16, v2, 0); r13 3 x 4 1
l.4421: v19 = lookup nibble(table 13891, v4); r13 2 x 4 1
l.4422: v16 = lookup nibble2(table 4940, v16, v18, 0); rcx 2 x 4 1
l.4421: v19 = lookup nibble(table 13891, v4); r13 1 3.x 1 1
l.4421: v19 = lookup nibble(table 13891, v4); r13 0 3.x 1 1
l.4418: v16 = lookup nibble(table 13888, v3); rdx 0 3.x 1 1
l.4463: v4 = lookup nibble(table 13915, v4); r9 0 3.x 3 1
l.4462: v35 = lookup nibble(table 13914, v4); rdi 0 3.x 3 1
l.4464: v34 = lookup nibble2(table 5003, v34, v35, 0); rcx 2 3.x 3 1
l.4315: v21 = lookup nibble(table 13815, v13); rbx 0 3.x 7 2
l.4316: v18 = lookup nibble2(table 4779, v18, v20, 0); r13 1 3.x 6 2
l.4343: v33 = lookup nibble(table 13831, v13); r12 2 3.x 3 2
l.4343: v33 = lookup nibble(table 13831, v13); r12 3 3.x 3 2
l.4199: v17 = lookup nibble2(table 4605, v17, v19, 0); r10 0 3.x 7 3
l.4199: v17 = lookup nibble2(table 4605, v17, v19, 0); r10 1 x 4 3
l.4199: v17 = lookup nibble2(table 4605, v17, v19, 0); r10 3 3.x 7 3
l.4200: v18 = lookup nibble(table 13732, v11); rbx 0 3.x 7 3
l.4200: v18 = lookup nibble(table 13732, v11); rbx 1 x 4 3
l.4200: v18 = lookup nibble(table 13732, v11); rbx 3 3.x 7 3
l.4204: v18 = lookup nibble2(table 4611, v18, v20, 0); rbx 0 x 4 3
l.4204: v18 = lookup nibble2(table 4611, v18, v20, 0); rbx 2 3.x 7 3
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l.4204: v18 = lookup nibble2(table 4611, v18, v20, 0); rcx 0 x 4 3
l.4204: v18 = lookup nibble2(table 4611, v18, v20, 0); rcx 2 3.x 7 3
l.4204: v18 = lookup nibble2(table 4611, v18, v20, 0); rcx 2 3.x 7 3
l.4230: v28 = lookup nibble(table 13750, v12); rbp 0 x 4 3
l.4227: v21 = lookup nibble2(table 4647, v21, v27, 0); rbx 2 x 0 3
l.4231: v29 = lookup nibble(table 13751, v12); rcx 0 x 4 3
l.4232: v26 = lookup nibble2(table 4653, v26, v28, 0); rcx 2 x 4 3
l.4232: v26 = lookup nibble2(table 4653, v26, v28, 0); rbp 2 x 0 3
l.4232: v26 = lookup nibble2(table 4653, v26, v28, 0); rbp 1 x 0 3
l.4228: v26 = lookup nibble(table 13748, v11); r12 4 x 4 3
l.4228: v26 = lookup nibble(table 13748, v11); r12 5 x 4 3
l.4228: v26 = lookup nibble(table 13748, v11); r12 6 x 4 3
l.4228: v26 = lookup nibble(table 13748, v11); r12 7 x 4 3
l.4232: v26 = lookup nibble2(table 4653, v26, v28, 0); rbx 6 x 4 3
l.4233: v27 = lookup nibble2(table 4654, v27, v29, 0); rcx 3 x 4 3
l.4233: v27 = lookup nibble2(table 4654, v27, v29, 0); rcx 4 x 4 3
l.4233: v27 = lookup nibble2(table 4654, v27, v29, 0); rcx 5 x 4 3
l.4233: v27 = lookup nibble2(table 4654, v27, v29, 0); rcx 6 x 4 3
l.4198: v16 = lookup nibble2(table 4604, v16, v18, 0); rax 1 x 1 4
l.4198: v16 = lookup nibble2(table 4604, v16, v18, 0); rax 1 3.x 4 4
l.4198: v16 = lookup nibble2(table 4604, v16, v18, 0); rax 3 x 1 4
l.4211: v21 = lookup nibble(table 13739, v6); rbp 3 3.x 6 4
l.4225: v27 = lookup nibble(table 13747, v6); rbp 2 3.x 5 4
l.4225: v27 = lookup nibble(table 13747, v6); rbp 3 2.x 3 4
l.4127: v5 = lookup nibble(table 13675, v5); r9 0 2.x 3 5
l.4126: v23 = lookup nibble(table 13674, v5); rdi 0 2.x 3 5
l.4123: v21 = lookup nibble2(table 4493, v21, v23, 0); r8 2 3.x 7 5
l.4127: v5 = lookup nibble(table 13675, v5); r14 2 3.x 7 5
l.4127: v5 = lookup nibble(table 13675, v5); r14 1 3.x 7 5
l.4128: v22 = lookup nibble2(table 4499, v22, v23, 0); rcx 1 3.x 7 5
l.4127: v5 = lookup nibble(table 13675, v5); rcx 2 2.x 3 5
l.4441: v35 = lookup nibble(table 13903, v14); r12 2 3.x 3 6
l.4442: v20 = lookup nibble2(table 4968, v20, v34, 0); r15 1 2.x 3 6
l.4442: v20 = lookup nibble2(table 4968, v20, v34, 0); r15 3 2.x 3 6
l.4456: v34 = lookup nibble2(table 4989, v34, v36, 0); r15 3 3.x 4 6
l.4311: v17 = lookup nibble2(table 4773, v17, v19, 0); r10 1 3.x 5 7
l.4311: v17 = lookup nibble2(table 4773, v17, v19, 0); r10 2 3.x 1 7
l.4312: v18 = lookup nibble(table 13812, v8); rbx 1 3.x 5 7
l.4312: v18 = lookup nibble(table 13812, v8); rbx 2 3.x 1 7
l.4316: v18 = lookup nibble2(table 4779, v18, v20, 0); rbx 0 3.x 5 7
l.4316: v18 = lookup nibble2(table 4779, v18, v20, 0); rbx 1 3.x 1 7
l.4316: v18 = lookup nibble2(table 4779, v18, v20, 0); rcx 0 3.x 5 7
l.4316: v18 = lookup nibble2(table 4779, v18, v20, 0); rcx 1 3.x 1 7
l.4328: v30 = lookup nibble(table 13822, v13); rbp 3 x 3 7
l.4328: v30 = lookup nibble(table 13822, v13); rbp 3 x 7 7
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l.4329: v31 = lookup nibble(table 13823, v13); rcx 3 x 3 7
l.4329: v31 = lookup nibble(table 13823, v13); rcx 3 x 7 7
l.4329: v31 = lookup nibble(table 13823, v13); rcx 2 x 3 7
l.4329: v31 = lookup nibble(table 13823, v13); rcx 2 x 7 7
l.4342: v32 = lookup nibble(table 13830, v13); rbp 0 3.x 7 7
l.4342: v32 = lookup nibble(table 13830, v13); rbp 1 3.x 3 7
l.4343: v33 = lookup nibble(table 13831, v13); rcx 0 3.x 7 7
l.4343: v33 = lookup nibble(table 13831, v13); rcx 1 3.x 3 7
l.4343: v33 = lookup nibble(table 13831, v13); rcx 0 3.x 3 7
l.4344: v30 = lookup nibble2(table 4821, v30, v32, 0); rcx 2 3.x 7 7
l.4357: v13 = lookup nibble(table 13839, v13); r14 0 3.x 4 7
l.4358: v7 = lookup nibble2(table 4842, v7, v31, 0); r13 0 3.x 4 7
l.4359: v8 = lookup nibble2(table 4843, v8, v13, 0); rcx 2 3.x 4 7
l.4309: v19 = lookup nibble(table 13811, v7); rdx 0 x 2 8
l.4324: v18 = lookup nibble2(table 4793, v18, v20, 0); rbx 0 x 1 8
l.4352: v30 = lookup nibble2(table 4835, v30, v31, 0); rbp 0 3.x 2 8
l.4352: v30 = lookup nibble2(table 4835, v30, v31, 0); rbp 3 3.x 2 8
l.4207: v17 = lookup nibble2(table 4619, v17, v19, 0); r10 2 3.x 5 9
l.4208: v18 = lookup nibble(table 13736, v1); rbp 2 3.x 5 9
l.4208: v18 = lookup nibble(table 13736, v1); rbp 1 3.x 5 9
l.4212: v18 = lookup nibble2(table 4625, v18, v20, 0); rcx 1 3.x 5 9
l.4225: v27 = lookup nibble(table 13747, v6); r11 2 3.x 6 9
l.4224: v26 = lookup nibble(table 13746, v6); r14 2 3.x 6 9
l.4221: v19 = lookup nibble2(table 4640, v19, v21, 0); r10 0 2.x 3 9
l.4221: v19 = lookup nibble2(table 4640, v19, v21, 0); r10 2 3.x 5 9
l.4221: v19 = lookup nibble2(table 4640, v19, v21, 0); r14 1 3.x 6 9
l.4225: v27 = lookup nibble(table 13747, v6); rcx 1 3.x 6 9
l.4222: v20 = lookup nibble(table 13744, v1); rbp 0 2.x 3 9
l.4222: v20 = lookup nibble(table 13744, v1); rbp 2 3.x 5 9
l.4225: v27 = lookup nibble(table 13747, v6); rbp 1 3.x 5 9
l.4226: v20 = lookup nibble2(table 4646, v20, v26, 0); rcx 1 3.x 5 9
l.4234: v20 = lookup nibble2(table 4660, v20, v26, 0); rcx 2 2.x 3 9
l.4238: v27 = lookup nibble(table 13754, v6); r9 3 2.x 3 9
l.4239: v6 = lookup nibble(table 13755, v6); r8 2 3.x 2 9
l.4235: v21 = lookup nibble2(table 4661, v21, v27, 0); rdi 3 2.x 3 9
l.4240: v26 = lookup nibble2(table 4667, v26, v27, 0); rdi 2 2.x 3 9
l.4239: v6 = lookup nibble(table 13755, v6); r15 2 3.x 2 9
l.4239: v6 = lookup nibble(table 13755, v6); rcx 2 2.x 3 9
l.4239: v6 = lookup nibble(table 13755, v6); r15 1 3.x 2 9
l.4241: v1 = lookup nibble2(table 4668, v1, v6, 0); rcx 1 3.x 2 9
l.4091: v21 = lookup nibble(table 13655, v15); rbx 1 x 7 10
l.4092: v18 = lookup nibble2(table 4443, v18, v20, 0); r13 1 3.x 6 10
l.4119: v25 = lookup nibble(table 13671, v15); r12 0 x 3 10
l.4119: v25 = lookup nibble(table 13671, v15); r12 1 x 0 10
l.4120: v22 = lookup nibble2(table 4485, v22, v24, 0); r15 0 2.x 4 10
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l.4134: v5 = lookup nibble2(table 4506, v5, v23, 0); rbp 1 x 3 10
l.4426: v20 = lookup nibble(table 13894, v14); r11 3 3.x 7 11
l.4423: v17 = lookup nibble2(table 4941, v17, v19, 0); r10 2 2.x 3 11
l.4427: v21 = lookup nibble(table 13895, v14); rcx 3 3.x 7 11
l.4427: v21 = lookup nibble(table 13895, v14); rcx 2 3.x 7 11
l.4424: v18 = lookup nibble(table 13892, v9); rbx 2 2.x 3 11
l.4428: v18 = lookup nibble2(table 4947, v18, v20, 0); rbx 1 2.x 3 11
l.4428: v18 = lookup nibble2(table 4947, v18, v20, 0); rcx 1 2.x 3 11
l.4465: v3 = lookup nibble2(table 5004, v3, v4, 0); r14 3 x 0 11
l.4465: v3 = lookup nibble2(table 5004, v3, v4, 0); r14 3 3.x 3 11
l.4470: v4 = lookup nibble2(table 5010, v4, v35, 0); rsi 3 x 0 11
l.4470: v4 = lookup nibble2(table 5010, v4, v35, 0); rsi 3 3.x 3 11
l.4470: v4 = lookup nibble2(table 5010, v4, v35, 0); rsi 2 x 0 11
l.4470: v4 = lookup nibble2(table 5010, v4, v35, 0); rsi 2 3.x 3 11
l.4470: v4 = lookup nibble2(table 5010, v4, v35, 0); rax 2 x 0 11
l.4470: v4 = lookup nibble2(table 5010, v4, v35, 0); rax 2 3.x 3 11
l.4425: v19 = lookup nibble(table 13893, v9); rax 1 3.x 1 12
l.4436: v18 = lookup nibble2(table 4961, v18, v20, 0); rbx 0 x 2 12
l.4450: v20 = lookup nibble2(table 4982, v20, v34, 0); rbp 3 x 7 12
l.4463: v4 = lookup nibble(table 13915, v4); r10 0 3.x 4 12
l.4463: v4 = lookup nibble(table 13915, v4); r10 1 x 7 12
l.4337: v31 = lookup nibble(table 13827, v7); r11 2 2.x 1 13
l.4336: v30 = lookup nibble(table 13826, v7); r14 2 2.x 1 13
l.4333: v19 = lookup nibble2(table 4808, v19, v21, 0); r14 1 2.x 1 13
l.4337: v31 = lookup nibble(table 13827, v7); rcx 1 2.x 1 13
l.4217: v27 = lookup nibble(table 13743, v12); r12 1 x 5 14
l.4104: v22 = lookup nibble(table 13662, v15); rbp 1 3.x 5 15
l.4105: v23 = lookup nibble(table 13663, v15); rcx 1 3.x 5 15
l.4105: v23 = lookup nibble(table 13663, v15); rcx 0 3.x 5 15

Table 1: Leakage characterization and mapping to the source code
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