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Abstract. Obfuscation is a software technique aimed at protecting high-
value programs against reverse-engineering. In embedded devices, it is
harder for an attacker to gain access to the program machine code; of
course, the program can still be very valuable, as for instance when it
consists in a secret algorithm. In this paper, we investigate how obscu-
rity techniques can be used to protect a secret customization of substitu-
tion boxes in symmetric ciphers, when the sole information available by
the attacker is a side-channel. The approach relies on a combination of a
universal evaluation algorithm for vectorial Boolean functions with indis-
tinguishable opcodes that are randomly shuffled. The promoted solution
is based on the noting that different logic opcodes, such as AND/OR or
AND/XOR, happen to be very close one from each other from a side-
channel leakage point of view. Moreover, our solution is very amenable
to masking owing to the fact the substitution boxes are computed (com-
binationally).

Keywords: Side-channel analysis, reverse-engineering, cryptography, sub-
stitution boxes (sboxes), CNF, ANF, masking, camouflage, obscurity.

1 Introduction

Side-channel analysis is a well-known technique to extract keys from secure de-
vices. It can be adapted to recover secret algorithms. In this case, it takes on the
name of side-channel analysis for reverse-engineering (SCARE). Several scholar
papers describe use-cases how SCARE can work in various contexts. For exam-
ple, Novak shows in [1,2,3] how to attack GSM algorithms. Such attacks are
later improved by Clavier [4]. Some other papers analyse general methods to
attack software implementations (references are [5,6,7,8,9]).

To combat SCARE, protections shall be implemented. Usually proposed so-
lutions to prevent SCARE attacks consist in applying standard side-channel
countermeasures (as described for instance in the “Differential Power Analy-
sis” book [10]). Now, robust side-channel countermeasures are costly. For in-
stance, a provable first-order masking scheme for the AES [11] makes its cost
increase from 3 kcycles to 129 kcycles.
? Corresponding author.



It is noteworthy that lowest-level solutions exist to prevent embedded infor-
mation stealth. For instance, at silicon-level, they consist in shaping standard
cells in such a way that different functions appear alike. This is illustrated on
the example displayed in Fig. 1. Thus, an attacker that wishes to recover the
circuit’s functionality by its destratification will eventually be deceived when
attempting to recognize gates. This is why this technique is termed hardware
camouflage4. However, this technological option is low-level, namely circuit lay-
out level, and thus might not be applicable to all business models (especially
fabless models).

Fig. 1. Hardware-level camouflage of gates. Left: an unprotected gate, whose function
is easy to identify. Center, right: almost indistinguishable AND/OR camouflaged gates.
[courtesy of SMI / SypherMedia Library]

In this article, we place ourselves in a context where the secret application
(or data) to be protected against SCARE is a code executed by a processor. For
this purpose, we explore a software solution based on camouflaged instructions5.
The idea is to take advantage of indistinguishable instructions, from a side-

4 This is colloquially known as hardware “camo”; there are many such examples of tech-
nologies, such as this patent [12] by IBM and the tens of patents cited by this patent.

5 We notice that the paper [13] also tackles a similar issue, but requires to process si-
multaneously a decoil value, like in dual-rail with precharge logics [14]. In our software
camouflage technique, the opcodes are balanced natively per se, without any deus ex
machina support.



channel point of view, to deceive an attacker eager to uncover the secret running
code.

The rest of the paper is organized as follows. In Sec. 2 we show that some
classes of instructions are delicate to recognize using side-channel leakage (which
will be all the more true as the data processed by the instruction is unknown).
These conclusions are derived from real-world side-channel studies on rep-
resentative embedded devices. In Sec. 3 we provide a software camouflage
based on the use of AND and OR, or AND and XOR (shown as hardly dis-
tinguishable), and compare the cost of our countermeasure to alternative pro-
tections against SCA or SCARE. This section considers the case-study of the
secret customization of substitution boxes (sboxes) in some block cipher. The
remarkable compatibility of our software camouflage method with masking is
also explained. The Sec. 4 discusses further considerations, such as the possi-
bility to use cryptographically strong sboxes that are parametrized in a more
lightweight way than the generic sboxes computations, or the resistance of
software camouflage to fault injection attacks. Eventually, the conclusions are
given in Sec. 5. Source codes for the most important algorithms are given in
Appendix A. The source code for the truth table to ANF conversion algorithm
is given in Appendix A.

2 Investigation on the Indistinguishability of Opcodes AND /
OR / XOR by Side-Channel Analysis

In this section, we intend to show that it is possible to choose a set of opcodes
that are difficult to distinguish one from each other by side-channel analysis.
We have conducted three distinct studies on two distinct platforms. The first
one is an ASIC that contains a 6502 microcontroller; the second one is an AT91
with an ARM7-TDMI processor executing a virtual machine JAVA simple RTJ
(32 bits); finally, the third one is the same platform, but executing native code
this time.

2.1 Investigation on 6502 Microcontroller

Our work on the 6502 CISC microcontroller is realized with power consump-
tion traces of the execution of a known code sample of an AES SubBytes func-
tion (16 loops for the entire state). The studied circuit has been synthesized
and founded in STMicroelectronics CMOS 130 nm technology, from a behav-
ioral description in VHDL of the 6502 processor [15]. Thanks to MODELSIM6

simulations of the 6502 VHDL code, we know the values of several internals
(registers, flags, signals, . . . ) at each clock cycle of the execution. The best linear
model of the consumption by a pair of internals using the least-squares method
(also known as “stochastic method” [16]) reveals that more than 98% of the con-
sumption is explained by the values of the Rd (Read data) and We (Write enable)

6 MODELSIM is a commercial tool, sold by Mentor Graphics, capable of simulating a
behavioral event-based HDL codes (e.g. VHDL or Verilog codes).



signals [17]. These signals are generated by the 6502 CPU to control the RAM
memory; they can take three values:

1. Rd/We = 0/0, noted O, when the memory is not accessed,
2. Rd/We = 1/0, noted R, when the memory is read, and
3. Rd/We = 0/1, noted W, when the memory is written to.

Of course, the last case (Rd/We = 1/1) never happens in practice. Using MOD-
ELSIM we observed that the sequence of values of the Rd/We signals during
the execution of a given opcode is always the same.

Calling signature of an opcode its sequence of Rd/We signals, we interest-
ingly noticed that, for any given addressing mode, some sets of distinct op-
codes share the same signature. This is illustrated in Table 1 for the following
set of opcodes: AND, AOR, EOR (logic AND, OR, XOR operations), and ADC
and SBC (arithmetic addition and subtraction). Given the tight relation between
the power consumption and the Rd and We signals, such set of opcodes which
share the same signature are virtually indistinguishable by side-channel analy-
sis. The interpretation of this interesting remark is that signals that are driving
the RAM are heavily loaded and thus have a strong leakage, whereas which
operation is executed by the ALU (arithmetic and logic unit) is selected by a
local signal that leaks little. This motivates the assumptions made in the sequel
that, in particular, AND, OR and XOR, cannot be distinguished.

AND OR XOR ADD SUB
(AND) (AOR) (EOR) (ADC) (SBC)

IMM ORR ORR ORR ORR ORR
Z-PAGE ORR ORR ORR ORR ORR

Z-PAGE, X ORR ORR ORR ORR ORR
ABS RORRR RORRR RORRR RORRR RORRR

ABS, X RORRR RORRR RORRR RORRR RORRR
ABS, Y RORRR RORRR RORRR RORRR RORRR

(IND, X) ORRORRR ORRORRR ORRORRR ORRORRR ORRORRR
(IND), Y ORRORRR ORRORRR ORRORRR ORRORRR ORRORRR

Table 1. Rd/We signature for a set of opcodes and for all addressing modes of the 6502

2.2 Investigation on ARM7 Java

The goal of our work done with the ARM7 and the virtual machine is the same
as in the previous section with the 6502: find whether there are sets of byte-
codes that are hard to distinguish by side-channel analysis. For this purpose,
we choose a set of bytecodes (ADDV1, DUP, ICONST0, . . . ) executed on our
platform and record their electromagnetic emission (average of 50 traces for
each bytecode). Next we compute the cross-correlation between each pair of



traces. Fig. 2 shows the results we have obtained. The fact that we get a high
level of cross-correlation (always beyond 0.86) is due to the common part of
each trace which is related to the instruction fetch at the Java level. We can iden-
tify groups of bytecodes that have really similar electromagnetic leakages: e.g.
(MULV1, MULV2) or (IXOR, IAND, IOR, SUBV1, SUBV2, ADDV1, ADDV2).

Fig. 2. Representation of the cross-correlation between each opcodes’ traces

2.3 Investigation on ARM7 Native Machine Code

We have practiced another experience on our ARM7 platform: this time, it is
profiled at the assembly level. This practice follows the same protocol that we
have used for our study at the Java level. The traces of the electromagnetic
leakage during the execution of an opcode are captured and analyzed. The re-
sult of this work is plotted on the three figures 3, 4 and 5. The first one, namely
Fig. 3, shows all the traces obtained after the execution of all the chosen opcodes
(SUB, ADD, OR, AND, XOR and MUL). The second one, namely Fig. 4 shows
the electromagnetic leakage obtained with the execution of a ADD and a SUB;
this graphic reveals that it is possible to distinguish these two opcodes. The last
one, namely Fig. 5, concerns the execution of the opcodes AND, OR and XOR;
these traces show that it is difficult to distinguish between this three opcodes
using side-channel analysis. The same arguments as given for the 6502 apply
to account for this noting: the only difference while executing a logic bitwise
operation is a selection in the ALU block within the CPU core.



Fig. 3. Traces of the electromagnetic leakage of all the opcodes

Fig. 4. Traces of the electromagnetic leakage of the ADD and SUB

3 Universal Computation Schemes for Substitution Boxes
based on AND, OR & XOR

This section shows how the indistinguishability of AND, OR & XOR opcodes
can be taken advantage of to dissimulate the functionality of an sbox from a
side-channel attacker. We assume the context in which a block cipher, such as
AES, is customized, so as to make its attack still more complex. This secret cryp-
tography practice is common in some market verticals, such as the conditional
access (Pay-TV smartcards) or the telecom protocols (encryption algorithms be-
tween the terminal and the base station). Instead of redesigning a completely
new block cipher, which is error-prone, it is often observed that a standard-
ized algorithm, trustworthy since well analyzed by crytanalysts, is slightly cus-



Fig. 5. Traces of the electromagnetic leakage of the AND, XOR and OR

tomized. One classical customization is the replacement of the sboxes by others
that have similar properties in terms of linear and differential characteristics.
We thus assume in this section that the goal of the designer is to compute a
secret sbox in such a way it cannot be uncovered even in the presence of side-
channel leakage.

3.1 Tabulated versus Computed Substitution Boxes

The sboxes implemented in memories (look-up-tables) have been shown to be
attackable thanks to a divide-and-conquer approach in [18]. The reason is that
every coordinate of the sbox can be guessed independently. Thus, a leakage
model can be determined by selecting some sub-functions, for example 2 → 1
functions (there are 16 of them) and attempting to correlate with them. There-
fore, it is advised to use standard countermeasures against side-channel attacks
to prevent those exploits. They are usually classified in two categories:

1. hiding [10, Chap. 7], that consists in balancing the leakage statically (e.g.
thanks to dual-rail with precharge logic), and

2. masking [10, Chap. 9], that consists in balancing the leakage statistically (e.g.
thanks to a secret sharing representation of the intermediate variables).

Direct application of masked logic or dual-rail logic is awkward, due to the
huge overhead in terms of area it requires. Indeed, the memory size, initially
n → m, becomes in both cases 2n → 2m (with the notation: number of input
bits → number of output bits). Let us call f : Fn

2 → Fm
2 the unprotected sbox,

and f̃ : F2n
2 → F2m

2 the protected sbox.
Regarding first-order masking, the equation of the masked table can for in-

stance write as:

Y = f̃(X) = (f(Xmask), f(Xmask ⊕Xmasked data)⊕ f(Xmask)) , (1)



where X = (Xmask, Xmasked data) ∈ F2n
2 and Y = (Ymask, Ymasked data) ∈ F2m

2 . The
two items in X and Y are called the shares. The Eqn. (1) satisfies the masking
property that Xmask ⊕ Xmasked data is actually the unmasked sensitive variable;
the same holds at the output of the sbox for Ymask⊕Ymasked data, because Ymask⊕
Ymasked data = f(Xmask ⊕Xmasked data). The masking is first-order only because it
makes use of only one mask per sensitive variable to protect, and because the
mask used at the input of the sbox is reused to mask its output.

For dual-rail logic, the new sbox has this equation:

Y = f̃(X) =

{
(¬f(¬Xtrue), f(Xtrue)) if ¬Xfalse = Xtrue,
(0, 0) otherwise, i.e. Xfalse = Xtrue = 0,

where X = (Xfalse, Xtrue) ∈ F2n
2 and Y = (Yfalse, Ytrue) ∈ F2m

2 . The property
satisfied by this redundant representation of the sbox is that the number of
transitions of variables in F2n

2 (or F2m
2 ) is constant if they are operated through

the precharge-evaluation protocol: X is equal to (0, 0) in precharge phase, and
then takes the valid value X = (¬Xtrue, Xtrue) at evaluation phase.

So, to summarize with a typical example, when n = m = 8, the number of
memory points in the memory is raised from 2 048 (8 × 28) for f to 1, 048, 576

(16× 216) for f̃ , i.e. an about 500× increase in size. This is considered unafford-
able for many applications.

Therefore, other protections shall be envisioned. Concerning masking, the
alternative of the global look-up table (Eqn. (1)) is the table recomputation. This
terminology stems from this paper [19] by Prouff et al.

The recomputation in “masking” is actually also prohibitive. For instance,
the execution time of an AES secured at first order is multiplied by 43 while
at the same time its implementation size is multiplied by 3 [11]. However, this
masking protects the data but not the operations. Thus, the cost to mask both
the data and the operations is expected to still be greater (cf. Sec. 4.1 for a quan-
titative analysis).

We therefore explore the possibility to use the “hiding” paradigm applied
to sbox recomputation. This has been first mentioned in asymmetric cryptogra-
phy, to protect against simple power attacks, i.e. against attacks that attempt to
break the key with one sole trace. The idea is to make two operations (in asym-
metric cryptography, it is the squaring and the multiplication) indistinguish-
able. To that end, each time the algorithm involves a key dependent choice, the
two branches are coded in such a way they look alike when analyzed from
a side-channel perspective. This approach is called the atomicity countermea-
sure [20]. We leverage on this idea to protect not only two portions of codes,
but any of the 2n executions of an n→ m sbox.

Our solution against the SCARE attack of the sbox relies on two features:

1. The opcodes used for the sbox computation leak, irrespective of the data
they process. It is thus important to already provide a regular sbox evalua-
tion that does not leak the computation in simple power analysis. This as-
pect requires universal regular sbox evaluation algorithms, that are able to



compute any sbox in an identical way (from a side-channel analysis stand-
point). This is covered in section 3.2.

2. Second, even if a horizontal analysis of the leakage is not possible owing to
the indistinguishability countermeasure, the implementation shall all the
same resist vertical attacks that aim at recovering the computed function
based on the possibility (or not) to correlate with a guessed leakage. The so-
lutions described in section 3.2 are amendable to shuffling [21], i.e. a counter-
measure that consists in executing the code in a random order. This aspect
is the subject of section 3.3.

3.2 Universal and Regular Sbox Evaluation

In this section, we present several ways to compute a secret substitution box
Fn
2 → Fm

2 using only AND & XOR instructions.

Conjunctive Normal Form (CNF) Each component j ∈ J1,mK of the sbox is
written as:

fj(x) =
∨

y∈Fn
2

fj(y) ∧
n∧

i=1

(1⊕ xi ⊕ yi) . (2)

As each term
∧n

i=1(1⊕ xi ⊕ yi) (also known as minterm, that is equal to 1 if and
only if x is equal to y) differs for different x, the CNF can be written alternatively
only with AND & XOR operations:

fj(x) =
⊕
y∈Fn

2

fj(y) ∧
n∧

i=1

(1⊕ xi ⊕ yi) . (3)

The overall cost is m×(2n−1)×(2n+1) bitwise operations. If the bitwidths are
n = m = 8 and if the CPU registers are at least bytes, then the m coordinates
can be computed in parallel, resulting in (2n − 1)× (2n+ 1) byte operations.

Algebraic Normal Form (ANF) Each component can also be written in a unique
way [22, Sec. 2.1.] as:

fj(x) =
⊕
y∈Fn

2

ay ∧
n∧

i=1

xi
yi , (4)

where for any xi, yi ∈ F2, xi
yi is equal to xi if yi = 1, or 1 otherwise. The

constant ay is equal to
⊕

z∈Fn
2 /z�y

fj(z), where (z � y) = 1 ⇐⇒ (z ∧ y) = z,
i.e. z has 1s at coordinates where y also has. We also say that z is covered by y.
In particular, the ay of Eqn. (4) are not connected to the fj(y) of Eqn. (3). A fast
algorithm to compute all the ay is given in the code listing 1.1 in Appendix A.
The monomial

∧n
i=1 xi

yi is also noted xy . It needs not be computed in a bitslice
manner; indeed, all the 1 ≤ j ≤ m computations in Eqn. (4) can be handled in
parallel, as illustrated in the code listing 1.2 in Appendix A. The overall cost is



m×(2n−1)×(n+1) bitwise operations. Indeed, in average on y, the computation
of xy requires only n/2 AND. Therefore, ANF is computed about twice faster
than CNF.

As noted for the CNF, an 8-bit CPU can evaluate the m = 8 coordinates at
once, and thus a 8 → 8 function can be computed in (2n − 1) × (n + 1) byte
operations.

Finally, it must be underlined that ANF and CNF can execute truly in con-
stant time; indeed, the sboxes are fully computed is a thorough method to pre-
vent timing attacks (refer for instance to the notice by Bernstein et al. [23]). Even
proven masking schemes (such as [11,24]) are prone to timing attacks if the Ga-
lois field multiplication is not implemented as a computation but as a look-up
table.

3.3 Secure Sbox Evaluation

Additional caution must be taken to prevent an attacker from correlating with
intermediate data that appears while Eqn. (4) is computed. This computation
can be executed whichever the order of the y value. Therefore, there are (2n)!
different permutations possible to shuffle the monomials xy . In particular, the
first operation realized is (almost) never the same, and thus a correlation power
analysis is doomed to failure. The standard method to extract information from
shuffled or disaligned instructions consists in averaging the side-channel trace
over a window large enough to certainly contain the sensitive variable leak-
age. In the scientific literature, it is referred to as an integrated DPA attack [25].
Numerically, the expected correlation coefficient in an integrated DPA attack is
divided by the square root of (2n)! [26, §3.2], i.e. divided by 2.9×10253; this justi-
fies why a correlation power analysis is considered impossible. Notice that this
is an intra-sbox shuffling; it can also be combined with an inter-sbox shuffling,
i.e. a shuffling between the 16 sboxes used by AES during each round.

A new attack on secret executed code consists in uncovering a hidden Mar-
kov chain, as used for instance in the removal of a random delay countermea-
sure [27]. The similarity of the AND/XOR guarantees that such an attack is
infeasible in practice.

The AES block cipher calls the sbox, called SubBytes, 16 times per round,
and those are all identical. But that could be made different in the customized
version of the algorithm. One advantage of the computation over the tabular of
the sbox is that the 16 sboxes can be made unique at the cost of a limited over-
head. The reason is that the code for the sbox evaluation can be shared, and that
only the constants (that is, either f(y) in CNF or the ay in ANF) change.

3.4 Software Camouflage Masking

It must be noted that despite the random shuffling of the sbox inner compu-
tations with ANF, at the end of evaluation, the result shall be stored; such op-
eration might leak unless care is taken. This side effect can be devastating if
the sbox computation is stored in memory: the leak is expected to be of similar



amplitude to that of the direct sbox evaluation as a table in RAM! This should
not happen in practice, when the sbox ANF formula is computed in registers.
But let us assume that the code is written in a high-level language such as C
(instead of an assembly language). It thus happens that a leakage exists in the
likely case the compiled program ends with a memory transfer. To point this
out, two actual implementations of the sbox using a regular look-up-table and
the ANF formula (obtained from a C program) have been evaluated in practice,
using a setup identical to that of the DPA contest version 4 [28]. The C code is
given in source listing 1.2; it has been compiled without optimizations (-O0 flag
in avg-gcc). The C code has been compiled without optimizations (-O0 flag
in avg-gcc). The code is loaded into an ATMega163 8-bit smartcard, and eval-
uated on a SASEBO-W platform [29], which is well-designed for side-channel
attacks experiments. The measurements are done with a LeCroy wave-runner
6100A oscilloscope by mean of a Langer EMV 3 GHz electromagnetic probe.
The smartcard is clocked at 3.57 MHz. Exemplary traces are shown for both
ways of evaluating the sbox in Fig. 6. The result of a correlation power analysis
(CPA [30]) on 200 traces is represented in Fig. 7. The window corresponds to the
sbox evaluation; the horizontal units are samples, knowing that the sampling
rate is 500 Msample/s. Clearly, when addressing a look-up-table, the leakage
is evident. When the implementation is an ANF computation, the CPA profile
is flat: there is no leakage during the computation, as expected. However, after
the computation, when the result is saved in RAM, it leaks7.

In order to prevent such problem, an option consists in masking the sbox.
This operation is trivial with the ANF formula, as it costs only one operation.
In the Eqn. (4), if the constant a(0···0)2 is toggled, then the whole sbox is turned
into the complementary sbox. Such computation makes it possible to defeat first
degree attacks (refer for instance to [31]), at a virtually free overhead. This means
that the peaks occurring at the end of Fig. 7(b) disappear.

4 Discussion

4.1 Comparison with an Approach Based on Masking the Data and the
Code

As already mentioned, masking is costly when it comes to compute nonlinear
operations. To solve our problem, namely computing a secret sbox with masked
data, the cost of the masking will still be higher. In this section, we estimate the
cost of masking at order one the data and the code of an sbox written in a
generic way.

As argued by Rivain and Prouff in their seminal paper about hi-order mask-
ing on CPUs [11], the masking of nonlinear functions are done more efficiently
at the word level rather than at the bit level8.

7 Notice that the storage of the sbox result is one option when computed in ANF, whereas
it is inherent (i.e. unavoidable) to the computation with a Look-up-Table.

8 The work by Kim et al. [24] has shown that for some specific problems, e.g. when the
sbox has a given structure (which is the case of the AES), minor improvements can



(a) (b)

Fig. 6. Example of traces for the (a) regular LUT and the (b) new ANF implementation of
SubBytes

(a) (b)

Fig. 7. Correlation Power Analysis of the Sbox (a) in a table, i.e., an array stored in a
RAM, and (b) computed using the ANF formula



Therefore, the masking schemes are the most efficient when operating on
the Galois field (F2n ,⊕,�). In this notation, ⊕ is the additive law (the XOR),
and� the multiplicative law. Using the Lagrange interpolation polynomial, any
function f : F2n → F2m can write:

f(x) =

2n−2⊕
i=0

bi � xi , (5)

where, here, xi is the ith power of x ∈ F2n , and where bi ∈ F2m ∼ Fm
2 are

constants.
The cost is 2n − 2 multiplications and 2n − 1 additions. When applying dth-

order masking, the overhead is given below [11]:

– Any nonlinear operation requires: (d + 1)2 field products, 2d(d + 1) field
additions:

– Any linear operation requires: d field additions.

Thus, Eqn. (5) masked at order d = 1 requires:

– (2n − 2)× 4 field products, and
– (2n − 2)× 4 + (2n − 1) field additions.

A field product can be computed thanks to log-alog tables [32], which repre-
sents 6 clock cycles:

– two look-ups in the log table,
– one (modular) addition — which lasts three cycles, one for the addition,

one to test the carry flag, and a last conditional reduction (always done to
prevent from timing attacks),

– and one look-up in the alog table.

So, if n = m = 8, the cost of the computing Eqn. (5) masked at first order is:
254× 4× 6 + 254× 4 + 255 = 7, 367 cycles.

This is more than 3 times more than the shuffled ANF, which requires only
(2n − 1)× (n+ 1) = 2, 295 byte operations, i.e. 2, 295 cycles.

However, it is expected that the proposed scheme is more efficient than
masking, because it exploits a property of the hardware (namely the indistin-
guishability of the AND / OR or AND / XOR opcodes).

4.2 Strong Sboxes with a Compact Encoding

There are 2m×2
n

different sbox Fn
2 → Fm

2 , hence m×2n bits of data is required to
parametrize them. This number applies to general block ciphers, such as Feistel
networks, that do not require the sboxes to be invertible. Some other generic

be got by computing on half-words, e.g. on nibble instead of bytes. But this result
does not negate the noting by Rivain and Prouff that computing masking schemes on
larger bitwidths is faster than computing at the bit level.



constructions of block ciphers, such as the substitution-permutation networks
(SPN), need the sboxes to be invertible. In this case, n = m and the number of
sboxes is equal to (2n)! < 2n×2

n

. Still, this number is very large.
It is certainly possible to use fewer parameters (e.g. 128 bits only, so as to

make the complexity of the SCARE as hard as the key recovery) while still de-
scribing a cryptographically strong sbox. As this work is a trade-off between
security and efficiency, it is left as an open issue for the interested reader.

4.3 Vulnerability of Secret Sboxes against Fault Injection Attacks

Fault injection attacks consist in perturbing a device in such a way to get in-
correct results, that nonetheless contain some information on the secrets. This
information is typically recovered by comparing the outputs of a correct en-
cryption and of a faulted one. Naturally, fault injection attacks can be tuned to
serve as the recognition of secret sboxes. In this case, the attack is termed fault
injection for reverse-engineering (FIRE). Clearly, unless actions are taken, our
countermeasure is vulnerable to FIRE attacks.

However, there exist simple ways to make those attacks inefficient. First of
all, the randomization of operations within an sbox computation (as promoted
in Sec. 3.3), as well as the possible randomization of sboxes evaluation order in
an AES round, significantly complexifies fault injection attacks, as the position
and the reproducibility of faults cannot be ascertained. Another option is to
check the computation based on the assertion of an invariant. For example,
the computation can be carried out nominally, which turns a plaintext into a
ciphertext. Then, before outputting this ciphertext, the latter is injected in the
decryption cipher. If the encryption and the decryption were successful, then
the decrypted cipher shall match with the plaintext. Now, it is very unlikely that
a fault during decryption manages to cancel the effect of a fault in encryption
mode. The reason is that fault injection is usually modelled as a probabilistic
effect, and that encryption is different from decryption. A third option consists
to deny the possibility for the attacker to submit twice the same plaintext. This
can be done easily simply by enforcing a mode of operation that makes use of
a random initialization vector.

The existence of these simple practices justifies that FIRE is not considered
a plausible threat.

5 Conclusions

It is discovered in this paper that logical operations of a CPU are almost in-
distinguishable using side-channel analysis. Therefore, generic constructions
of functions computations can be devised. We jointly refer to them as software
camouflage. We show that secret (customized) substitution boxes can be com-
puted without simple side-channel leakage (since all opcodes used in the com-
putation are alike), and without vulnerability against differential side-channel
leakage (by a shuffling of the operations). In addition, the computation result



of this software camouflage can be masked at virtual no cost, which secures
the leakage that can happen when moving this value (e.g., by a transfer from a
register to a RAM). The resulting construction is shown to be more than three
times faster than the state-of-the-art solution, namely the masking of the sbox
computation on masked data. This result shows that the a priori knowledge of
a device leakage can be constructively exploited to reduce the overhead of pro-
tections against side-channel analyses.
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A Algorithms Source Code

It is shown by Carlet in [22, page 11] that there exists a simple divide-and-
conquer butterfly algorithm to compute the ANF from the truth-table (or vice-
versa). It is called the “Fast Möbius Transform”. An implementation in python
is given in code listing 1.1, for n→ 1 Boolean functions. As already underlined
in Sec. 3.2, the very same code also works for n→ n vectorial Boolean functions.

Code Listing 1.1. Truth table to ANF table transformation

1 from operator import xor
2

3 n = 8 # Problem's size (we handle bytes, i.e., 8-bit words)
4

5 def tt2anf( S ):
6 """Truth table to ANF"""
7 # S is an array of 256 bits or bytes
8 # (depending the function is Boolean or vectorial Boolean)
9 h = {}

10 h[0] = {}
11 for a in range( 1<<n ):
12 h[0][a] = [S[a]]
13 for k in range( n ):
14 h[k+1] = {}
15 for b in range( 1<<(n-k-1) ):
16 # the "+" expresses the concatenation
17 h[k+1][b] = h[k][2*b] + map( xor, h[k][2*b], h[k][2*b+1] )
18 return h[n][0]

http://www.DPAcontest.org/v4/
http://www.risec.aist.go.jp/project/sasebo/


The application of the code listing 1.1 to f = SubBytes (array noted S TT)
is given as S AND in the code listing 1.2. The values in the array S TT are
{f(y), y ∈ F8

2}, in this order, whereas the values in the array S ANF are {ay, y ∈
F8
2} (recall Eqn. (4)). In the same code listing, the function anti scare eval

applies SubBytes on a byte x, with the formula of Eqn. (4). Furthermore, in
this code, the y’s are shuffled (See Sec. 3.3) by a simple XOR with a random
byte r.

Code Listing 1.2. Shuffled evaluation of SubBytes with the ANF computation

1 /** Portable C types. We use uint8_t */
2 #include <stdint.h>
3
4 /** Original SubBytes [provided for self-containedness] */
5 static uint8_t S_TT[] = {
6 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
7 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
8 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
9 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,

10 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
11 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
12 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
13 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
14 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
15 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
16 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
17 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
18 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
19 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
20 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
21 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
22
23 /** SubBytes under ANF form [obtained by the python script tt2anf] */
24 static uint8_t S_ANF[] = {
25 0x63, 0x1f, 0x14, 0x13, 0x91, 0x86, 0x89, 0x20, 0x53, 0x2e, 0x43, 0x6e, 0x5f, 0x9e, 0x8b, 0xa9,
26 0xa9, 0x57, 0x17, 0xef, 0xa1, 0x6d, 0x37, 0xc8, 0x34, 0x1f, 0x4f, 0xe6, 0x5e, 0x34, 0xd4, 0xbf,
27 0xd4, 0x55, 0x30, 0xec, 0x10, 0xc5, 0x6c, 0xed, 0xd0, 0xf5, 0xb6, 0x14, 0x9b, 0xe5, 0xff, 0x6c,
28 0x1a, 0xde, 0x14, 0x33, 0x3c, 0x63, 0xe8, 0x37, 0xb4, 0x12, 0x1a, 0xc8, 0x6a, 0xdb, 0x44, 0x34,
29 0x6a, 0x95, 0x31, 0xaf, 0x83, 0x79, 0xed, 0x13, 0x08, 0xcd, 0xe2, 0xde, 0x36, 0xc2, 0x6d, 0xf7,
30 0xf3, 0x5f, 0x61, 0x3c, 0xc0, 0xcc, 0x91, 0xa2, 0x56, 0xdf, 0x69, 0x1f, 0x64, 0x91, 0x36, 0x0f,
31 0x0d, 0xe0, 0x6f, 0x3e, 0x91, 0x0b, 0x02, 0x08, 0x1e, 0x95, 0x2a, 0x0b, 0x74, 0x58, 0x9b, 0x7e,
32 0xc1, 0x1b, 0x09, 0xb3, 0x0d, 0x0e, 0xff, 0x74, 0xae, 0xa9, 0x76, 0x52, 0xb9, 0x87, 0x1a, 0x08,
33 0xae, 0xde, 0xca, 0x2d, 0x03, 0x8f, 0x4c, 0x85, 0x5a, 0x8c, 0x27, 0x70, 0x6d, 0xcd, 0x89, 0x7f,
34 0x04, 0x77, 0xe6, 0xa3, 0x71, 0x8d, 0x6f, 0x0f, 0x1b, 0xf4, 0xfa, 0x8e, 0xb6, 0xa6, 0x60, 0x5f,
35 0xf9, 0x46, 0x34, 0x30, 0x2b, 0x51, 0x1e, 0x9d, 0xfb, 0x94, 0x66, 0x37, 0x53, 0x3e, 0x51, 0x29,
36 0xb0, 0x03, 0xef, 0xe8, 0x2f, 0x69, 0x14, 0xef, 0x32, 0x2f, 0x53, 0xcc, 0x1b, 0x93, 0x1c, 0x10,
37 0x1d, 0x96, 0x70, 0x58, 0xb7, 0x08, 0x1f, 0xb7, 0x53, 0x98, 0x85, 0x57, 0x01, 0x2a, 0x04, 0x89,
38 0x94, 0xf3, 0xca, 0x24, 0x8e, 0x51, 0x85, 0x4a, 0x3a, 0xd9, 0x2c, 0xc7, 0x56, 0xae, 0x3f, 0x17,
39 0x7b, 0x28, 0x8d, 0xbb, 0x84, 0x4e, 0xd9, 0x43, 0x1d, 0x9f, 0x9c, 0xc4, 0x64, 0x8f, 0x3a, 0x2e,
40 0xcc, 0x7e, 0xd4, 0x05, 0x3b, 0xa4, 0x29, 0x63, 0xdc, 0x10, 0xc3, 0xce, 0x0d, 0x9d, 0x04, 0x00 };
41
42 /**
43 * Application of S_TT on input "x" via the ANF table (S_ANF),
44 * with a random ordering equal to "yr" (yr = y XOR r),
45 * where "r" is a uniformly distributed byte
46 */
47 uint8_t anti_scare_eval( uint8_t* S_ANF, uint8_t x, uint8_t r )
48 {
49 uint8_t result = 0x00u;
50 uint8_t y = 0x00u, yr;
51
52 do
53 {
54 yr = yˆr;
55 result ˆ= S_ANF[yr] & ((( x | ( 0xffuˆyr )) == 0xffu ) ? 0xffu : 0x00u );
56 }
57 while( y++ != 0xffu );
58
59 /* At this stage, the variable "result" is equal to S_TT[x], no matter the value of the shuffling random

parameter "r" */
60 return result;
61 }
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